Главная > Разное > Математика в биологии и медицине
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

3.2. ЗНАЧЕНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ

В гл. 1 мы высказали убеждение в преимуществе метода математического моделирования как средства, позволяющего достигнуть значительно большей ясности и точности, чем чисто словесные методы. Вначале мы остановились на относительно статических ситуациях, а затем рассмотрели динамические процессы, изменяющиеся во времени. В гл. 2 были введены вероятностные аспекты, и это привело нас к обсуждению случайных процессов, а также вопросов математической статистики, связанных с проверкой адекватности математических моделей на основе фактических данных. Как было указано в предыдущем разделе, такая проверка гипотез составляет существенную часть научного метода. Любая разумная научная гипотеза имеет хотя бы некоторые количественные аспекты, однако в данной книге нас больше интересуют такие математические описания, которые достаточно детальны, чтобы заслуживать названия математической модели. Но такая модель имеет в точности такой же логический статус, что и любая гипотеза с гораздо меньшим количественным содержанием. Это означает, что математическая модель дает частичное описание определенных аспектов реальной действительности и ее справедливость целиком зависит от точности этого изображения.

Учитывая крайнюю сложность большинства биологических систем, нетрудно понять, что в биологии простые и легко поддающиеся исследованию математические модели представляют собой чрезвычайно грубые приближения. И, что еще хуже, математики могут с энтузиазмом приняться за глубокую теоретическую разработку моделей, неадекватность которых известна заранее, только потому, что это не составляет большого труда (во всяком случае, для них).

Может также случиться, что математическому анализу будет подвергнута вполне правдоподобная модель, но она не удовлетворит требованиям научного метода, поскольку нельзя найти способа проверить полученные результаты. Значительная часть математической биологии не защищена от такого рода возражений, которые, если придавать им слишком большое значение, могут причинить большой вред. Биологи и врачи совершенно справедливо с подозрением относятся к любой работе, которая представляет собой лишь клубок математических абстракций и не вписывается в непрерывный процесс развития науки.

По нашему мнению, математическая модель, если ее правильно понимать и правильно применять, имеет точно такой же логический статус, как и любая другая научная гипотеза, и поэтому при обращении с ней и проверке ее справедливости необходимо исходить из тех же критериев. Именно потому, что модель формулирует задачу, так сказать, в «очищенном» виде, значительно легче почувствовать трудности этой задачи. С этими трудностями можно частично справиться путем отыскания лучших способов исследования моделей, достаточно сложных для близкого соответствия с реальными процессами (примером может служить моделирование сложных случайных процессов на вычислительной машине). Однако это еще не все. В конце раздела 2.4, посвященного случайным процессам, кратко говорилось о том, что простые модели, отражающие лишь немногие свойства реального процесса, важны тем, что они дают общее представление о процессе, тогда как для достижения статистического соответствия с фактическими данными необходимы более сложные модели. Это противоречие между требованиями, которым должны удовлетворять модели, дающие общее представление о процессе, и модели, дающие реальное его изображение, имеет существенно важное значение в математической биологии, и необходимо в полной мере отдавать себе отчет в связанных с ним трудностях.

Так, на элементарном уровне детерминистский экспоненциальный закон может оказаться вполне приемлемой моделью роста популяции при решении таких демографических задач, как грубое предсказание роста численности населения, т. е. в тех случаях, когда рассматриваются большие числа. Более точные результаты можно получить, разбивая популяцию на группы по возрасту и полу, для каждой из которых характерны свои собственные скорости роста или уменьшения численности. Допустим теперь, что необходимо исследовать более мелкие группы, в которых наблюдаются очень сильные статистические колебания. Как показано в разд. 2.4, в этих случаях возникают значительные сложности даже при изучении простейшего случайного процесса размножения; что же говорить о трудностях, которые вносят такие факторы, как гибель, миграция, пространственная деформация и т. д.

Более того, в большинстве аналитически разрешимых моделей принимается ряд необоснованных допущений, например допущение об экспоненциальном распределении продолжительностей жизни. Выбор более реалистических распределений значительно затрудняет формулировку и описание рассматриваемых процессов. Тем не менее существенно, что даже чрезмерно упрощенные модели находят применение и имеют известную научную ценность.

Допустим, что мы построили вначале детерминистскую модель. Тогда перед нами встает вопрос: к каким последствиям приведет включение в нее вероятностных элементов, т. е. рассмотрение соответствующих распределений? Окажет ли это существенное влияние на результаты? Какие новые общие свойства будет иметь стохастическая модель по сравнению с детерминистской моделью? И так далее. На все эти вопросы можно дать общий ответ, исследовав некоторые простые случайные процессы и вычислив такие величины, как математические ожидания, дисперсии, вероятности вымирания популяции, распределения размеров популяции и т. п. Все это должно дать более глубокое представление об исследуемом процессе. Возможно, мы придем к заключению, что одни его аспекты необходимо рассматривать, а другими можно пренебречь. Например, при изучении мутаций у бактерий необходимо выбрать вероятностный подход при рассмотрении небольших групп мутантов, так как здесь наблюдаются большие статистические колебания, но основная популяция, состоящая из клеток дикого типа, во многих случаях достаточно велика, и в качестве первого приближения вполне приемлем детерминистский подход (см. разд. 8.3). Простейшее исследование повторяющихся эпидемий (см. разд. 9.4) вероятностными методами показывает, что такого рода математическое описание позволяет в общих чертах объяснить важное свойство таких эпидемий — периодическое возникновение вспышек примерно одинаковой интенсивности, тогда как детерминистская модель дает ряд затухающих колебаний, что не согласуется с наблюдаемыми явлениями. При желании разработать более детальные, реалистические модели мутаций у бактерий или повторяющихся эпидемий эта информация, полученная с помощью предварительных упрощенных моделей, будет иметь очень большую ценность. В конечном счете успех всего направления научных исследований определяется возможностями моделей, построенных для объяснения и предсказания реальных наблюдений.

Одно из больших преимуществ правильно построенной математической модели состоит в том, что она дает довольно точное описание структуры исследуемого процесса. С одной стороны, это позволяет осуществлять ее практическую проверку с помощью соответствующих физических, химических или биологических экспериментов.

С другой стороны, математический анализ расширяет наши теоретические знания. Если основные уравнения можно решить аналитическим путем, то, подставляя в них различные значения рассматриваемых параметров, мы автоматически получаем решение всех возможных вариантов задачи. Кроме того, сама по себе аналитическая форма решений может углубить наши знания, позволяя выразить наблюдаемые биологические закономерности в виде математических теорем. Примерами такого рода служат пороговая теорема в теории эпидемий и условия достижения равновесия в популяции, в которой благоприятные и неблагоприятные мутации генетически сцеплены.

По возможности нужно применять чисто математические методы исследования модели, так как это позволяет наиболее полно использовать мощные аналитические возможности. К сожалению, во многих случаях получить решение основных уравнений аналитическими методами не удается и необходимо обращаться к численным решениям. Численный анализ, который рассматривается далее в разд. 5.2, полон ловушек, подстерегающих неосторожного исследователя. Однако при соблюдении достаточной осторожности численные решения часто дают значительный объем полезной информации о свойствах модели. По мере усложнения моделей и приближения их к реальным процессам уменьшается возможность получения лаконичных изящных решений в явном виде и все более возрастает необходимость обращаться к тем или иным формам численных решений. Поэтому в настоящее время исключительно важное значение приобретают быстродействующие вычислительные машины.

В некоторых случаях возникают более серьезные трудности. Может оказаться, что полученные дифференциальные уравнения движения для некоторого сложного биологического процесса (это могут быть дифференциальные уравнения в частных производных высокого порядка) не только неразрешимы аналитически, но и не поддаются решению существующими методами численного анализа. В этом случае наиболее целесообразно применение физического моделирования (разд. 2.5). Как и типичные методы численного анализа, физическое моделирование обладает тем недостатком, что оно не позволяет получить аналитические выражения для рассматриваемого процесса. Однако этот недостаток компенсируется такими преимуществами, как простота и гибкость метода и возможность избежать сложных численных расчетов, полагаясь на статистические свойства достаточно большого числа повторных вычислений.

Последний вопрос, заслуживающий упоминания в связи с использованием физического моделирования, состоит в следующем. Хотя в принципе такое моделирование дает не больше информации, чем чисто математические расчеты, на практике оно обеспечивает значительное приближение к условиям реального эксперимента.

Моделирование может приобрести особенно важное значение при изучении сложных биологических систем и уже широко применяется при исследовании операций (эта область довольно детально рассматривается в гл. 4). Многие задачи исследования операций возникают из необходимости внедрить некоторую близкую к оптимальной схему действия, однако часто оказывается, что характер задачи не позволяет провести эксперименты в реальных условиях. В этих случаях возможно экспериментирование на достаточно сложных моделированных системах, обеспечивающих высокую степень приближения к реальности.

<< Предыдущий параграф Следующий параграф >>
Оглавление