Главная > Разное > Математика в биологии и медицине
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

1.4. ОБЛАСТИ ПРИМЕНЕНИЯ МАТЕМАТИЧЕСКИХ МЕТОДОВ

Несколько лет назад, когда автор этой книги работал консультантом по вопросам математической статистики в небольшой медицинской научно-исследовательской группе, разговоры о возможности проложить математическую тропинку через густые дебри экологических факторов часто заканчивались довольно скептическим покачиванием головой и утверждением, что «медицина — это все-таки искусство». Отчасти это, конечно, верно в том смысле, что интуиция и воображение для врача действительно необходимы. В то же время большинство больных и потенциальных больных, несомненно, надеются на непрерывное развитие и расширение научных аспектов медицины. А наука означает применение математики.

Существенно важен вопрос о том, в каких областях применимы математические методы. В разд. 1.1 мы уже отмечали, что потребность в математическом описании появляется при любой попытке вести обсуждение в точных понятиях и что это касается даже таких сложных областей, как искусство и этика. В настоящем разделе мы несколько конкретнее рассмотрим области применения математики в биологии и медицине.

Хорошо известно, что один из подходов к описанию картины природы — это построение иерархии уровней организации, изучаемых различными науками; по уровню абстракции, свойственному каждой из них, эти науки можно расположить в такой последовательности: физика, химия, биохимия, физиология, психология, социология. Мы начинаем с основных материальных элементов реального мира, т. е. с субатомного уровня, и заканчиваем необычайно разносторонними проявлениями духовной жизни человеческого общества. В этой последовательности уровней организация и сложность непрерывно повышаются. На каждом уровне действуют свои собственные законы, и поэтому их можно изучать до некоторой степени независимо друг от друга. Однако любой из них нерасторжимо связан с закономерностями, действующими на более низких уровнях. Так, законы физики и химии отчасти распространяются и на психологию, хотя понятия и законы последней выходят за пределы физических и химическпх законов.

Проблемы, касающиеся организации и деятельности больниц, следует отнести к более высокому уровню абстракции, чем, скажем, физиологию и патологию человека. Но хотя в определенной степени логическое содержание этого более высокого уровня независимо от более низкого, вопросы физиологии и патологии неизбежно должны учитываться при решении любой проблемы, касающейся организации больничных служб. Мы не собираемся углубляться здесь в эти философские рассуждения или обсуждать отдельные их детали, а хотим лишь подчеркнуть, что описанная последовательность уровней приближенно соответствует порядку возрастания трудностей при использовании научных методов и проведении математических исследований.

Как мы уже отмечали, прикладная математика добилась крупных и бесспорных успехов в области физики и химии, однако в данной книге мы не будем касаться этих вопросов. В разд. 1.2 было показано, что математические описания, связанные с биологическими формами, охватывают широкий круг вопросов и могут быть проведены достаточно точно. В разд. 1.3 мы познакомились с динамическими моделями развития и коснулись проблем, связанных со случайными колебаниями численности популяций. Изложение этих вопросов требовало достаточной степени абстракции, однако именно использование упрощающих допущений позволило нам получить некоторое представление о законах, регулирующих рост популяций. Было отмечено, что при рассмотрении такого рода проблем неизбежно приходится сталкиваться с фактором статистической изменчивости, подробное обсуждение которого переносится в гл. 2.

При переходе на более высокие уровни абстракции мы сталкиваемся не только с более сложными вопросами, но и с возрастающей степенью изменчивости, по большей части непредсказуемой. Например, полная картина конкуренции между несколькими видами, обитающими в определенной среде, включает огромное множество факторов. В области научных экологических описаний, выполненных главным образом в словесной форме, достигнуты значительные успехи, однако разработка математических моделей находится здесь еще на самом элементарном уровне. Другим примером может служить область медицинской диагностики. Для постановки диагноза врач совместно с другими специалистами часто бывает вынужден учитывать самые разнообразные факты, опираясь отчасти на свой личный опыт, а отчасти на материалы, приводимые в многочисленных медицинских руководствах и журналах. Общее количество информации увеличивается со все возрастающей интенсивностью, и есть такие болезни, о которых уже столько написано, что один человек не в состоянии в точности изучить, оценить, объяснить и использовать всю имеющуюся информацию при постановке диагноза в каждом конкретном случае.

Разумеется, хороший диагност, используя свой большой опыт и интуицию, может отобрать необходимую часть важных данных и дать достаточно точное заключение. Однако, как это ни парадоксально звучит, по мере накопления знаний положение ухудшается.

Именно в такого рода ситуациях, когда разум одного человека не способен справиться со сложностями стоящих перед ним задач и описать их решение даже в общей словесной форме, специалисты в области так называемых неточных наук (включая, разумеется, биологию и медицину) часто утверждают, что математический анализ несовершенен, неуместен, приводит к ошибочным заключениям или невозможен, и поэтому его лучше избегать. Это возражение содержит рациональное зерно в том смысле, что современная математика, возможно, еще недостаточно совершенна; однако пройдет время, и мы увидим, что справедливо как раз обратное. В тех случаях, когда задача содержит большое число существенных взаимозависимых факторов, каждый из которых в значительной мере подвержен естественной изменчивости, только с помощью правильно выбранного статистического метода можно точно описать, объяснить и углубленно исследовать всю совокупность взаимосвязанных результатов измерений. Если число факторов или важных результатов настолько велико, что человеческий разум не в состоянии их обработать даже при введении некоторых статистических упрощений, то обработка данных может быть произведена на электронной вычислительной машине. Использование статистических методов и вычислительной техники рассматривается в гл. 2 и 5 соответственно.

Основная причина недоверия к математическим и вычислительным методам, по-видимому, состоит в следующем. Математическая модель некоторого биологического явления будет приемлемой для биолога только в том случае, если выраженная в словесной форме информация об этом явлении, которой он располагает, достаточно полна для того, чтобы можно было судить об адекватности модели. Ясно, что получение такой информации представляет собой первый и наиболее важный этап биологического исследования и что на этом этапе математика играет второстепенную роль. Естественно, возникает мысль, что по мере того, как вопросы становятся более трудными и сложными, математика приобретает все меньшее и меньшее значение. Однако не всегда учитывается то обстоятельство, что, достигнув достаточной степени сложности, математика развивается далее по своим собственным законам и дает биологу понятия и образ мышления, которых у него раньше не было. Будем надеяться, что эта книга хотя бы в некоторой степени проиллюстрирует справедливость этого утверждения.

До сих пор мы имели в виду главным образом те биологические и медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. Далее мы перейдем к проблемам, связанным с поведением животных и психологией человека, т. е. к использованию прикладных наук для достижения некоторых более общих целей. Эту область довольно расплывчато называют исследованием операцийи более детально она рассматривается в гл. 4. Пока мы лишь отметим, что речь будет идти о применении научных методов при решении административных и организационных задач, особенно тех, которые непосредственно или косвенно связаны с биологией и медициной. Лесоводство, животноводство, общие вопросы сельскохозяйственного производства, проектирование больниц и организация медицинского обслуживания — таковы лишь немногие вопросы, относящиеся к этой категории.

Разумеется, не все задачи административного управления можно решить на научной основе, используя методы исследования операций. Однако применение этих методов там, где оно возможно (а они применимы ко многим задачам такого рода), имеет большие преимущества, так как позволяет расширить область точных исследований и сократить область неопределенных словесных рассуждений. Благодаря этому интуиция и здравый смысл человека могут быть направлены на решение тех вопросов, где невозможно применение шаблонных методов. Еще более сложны вопросы, к которым примешиваются какие-либо этические соображения. Но иногда математический анализ может помочь даже и в этих случаях. Например, в медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор, пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностных статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов. Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение. О последовательностных методах более подробно говорится в разд. 2.3.

Основное положение настоящего раздела состоит в том, что математические методы применимы к самому широкому кругу вопросов — от физики элементарных частиц до моральных проблем. Удобно (хотя вовсе не обязательно) рассматривать некую иерархию уровней. По мере перехода на более абстрактные уровни математические методы оказываются менее разработанными и применять их становится все труднее.

Тем не менее при правильном применении математический подход не отличается существенно от подхода, основанного просто на здравом смысле. Математические методы просто более точны и в них используются более четкие формулировки и более широкий набор понятий, но в конечном счете они должны быть совместимы с обычными словесными рассуждениями, хотя, вероятно, и идут дальше их.

<< Предыдущий параграф Следующий параграф >>
Оглавление