Главная > Разное > Математика в биологии и медицине
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

9.7. ПРОСТРАНСТВЕННЫЕ МОДЕЛИ

До последнего времени географические факторы, оказывающие существенно важное влияние на распространение заболеваний, исследовались сравнительно мало. Справедливость предположения об однородном перемешивании населения в небольшом городе или деревне уже давно ставилась под сомнение, хотя вполне допустимо в качестве первого приближения принять, что перемещения источников инфекции носят случайный характер и во многом напоминают движение частиц в коллоидном растворе. Тем не менее необходимо, конечно, иметь некоторое представление о том, к какому эффекту может привести наличие большого числа восприимчивых индивидуумов в пунктах, удаленных на довольно большие расстояния от любого данного источника инфекции.

В детерминистской модели, принадлежащей Д. Кендаллу, предполагается существование бесконечного двумерного континуума популяции, в которой на единицу площади приходится о индивидуумов. Рассмотрим область , окружающую точку Р, и допустим, что числа восприимчивых, зараженных и удаленных из коллектива индивидуумов равны соответственно . Величины х, у и z могут быть функциями времени и положения, однако их сумма должна равняться единице. Основные уравнения движения, аналогичные системе (9.18), имеют вид

где — пространственно взвешенное среднее значение

Пусть и — постоянные, — элемент площади, окружающий точку Q, и — неотрицательный весовой коэффициент.

Допустим, что начальная концентрация заболеваний равномерно распределена в некоторой небольшой области, окружающей первоначальный очаг. Заметим также, что в произведение Роху в явном виде введен множитель о, с тем чтобы скорость распространения инфекции оставалась независимой от плотности популяции. Если бы у оставалось постоянным на плоскости, то интеграл (9.53) наверняка сходился бы. В этом случае удобно было бы потребовать, чтобы

Описанная модель позволяет довольно далеко продвинуть математические исследования. Можно показать (с одной-двумя оговорками), что пандемия охватит всю плоскость в том и только в том случае, если плотность популяции превышает пороговое значение . Если пандемия возникла, то ее интенсивность определяется единственным положительным корнем уравнения

Смысл этого выражения состоит в том, что доля индивидуумов, заболевающих в конце концов в любой области, как бы далеко она ни отстояла от первоначального эпидемического очага, будет не меньше ?. Очевидно, что эта теорема Кендалла о пороге пандемии аналогична пороговой теореме Кермака и Мак-Кендрика, в которой пространственный фактор не учитывался.

Можно также построить модель для следующего частного случая. Пусть х и у — пространственные плотности восприимчивых и зараженных индивидуумов соответственно. Если считать инфекцию локальной и изотропной, то нетрудно показать, что уравнения, соответствующие первым двум уравнениям системы (9.18), можно записать в виде

где не пространственные координаты] и

Для начального периода, когда можно приближенно считать постоянной величиной, второе уравнение системы (9.56) примет вид

где .

Это стандартное уравнение диффузии, решение которого имеет вид

где постоянная С зависит от начальных условий.

Общее число зараженных индивидуумов, находящихся вне круга радиусом R, равно

Следовательно,

и если , то . Радиус соответствующий какому-либо выбранному значению растет со скоростью . Эту величину можно рассматривать как скорость распространения эпидемии, и ее предельное значение для больших t равно . В одном из случаев эпидемии кори в Глазго в течение почти полугода скорость распространения составляла около 135 м в неделю.

Уравнения (9.56) легко видоизменить так, чтобы была учтена миграция восприимчивых и зараженных индивидуумов, а также появление новых восприимчивых индивидуумов. Как и в случае повторяющихся эпидемий, рассмотренных в разд. 9.4, здесь возможно равновесное решение, однако небольшие колебания затухают столь же быстро или даже быстрее, чем в непространственной модели. Таким образом, ясно, что в данном случае детерминистский подход имеет определенные ограничения. В принципе следовало бы, конечно, предпочесть стохастические модели, но обычно анализ их сопряжен с огромными трудностями, во всяком случае если он проводится чисто математическим путем.

Было выполнено несколько работ по моделированию этих процессов. Так, Бартлетт [12] использовал ЭВМ для изучения нескольких последовательных искусственных эпидемий. Пространственный фактор был учтен введением сетки ячеек . Внутри каждой ячейки использовались типичные непространственные модели для непрерывного или дискретного времени и допускалась случайная миграция зараженных индивидуумов между ячейками, имеющими общую границу. Была получена информация о критическом объеме популяции, ниже которого происходит затухание эпидемического процесса. Основные параметры модели были получены на основе фактических эпидемиологических и демографических данных.

Недавно автор этой книги предпринял ряд аналогичных исследований, в которых была сделана попытка построить пространственное обобщение стохастических моделей для простого и общего случаев, рассмотренных в разд. 9.2 и 9.3. Допустим, что имеется квадратная решетка, каждый узел которой занят одним восприимчивым индивидуумом. В центре квадрата помещается источник инфекции и рассматривается такой процесс цепочечно-биномиального типа для дискретного времени, в котором опасности заражения подвергаются только индивидуумы, непосредственно примыкающие к какому-либо источнику инфекции. Это могут быть либо только четыре ближайших соседа (схема 1), либо также индивидуумы, расположенные по диагонали (схема 2); во втором случае всего будет восемь индивидуумов, лежащих на сторонах квадрата, центр которого занимает источник инфекции.

Схема 1.

Схема 2.

Очевидно, что выбор схемы произволен, однако в нашей работе использовалось последнее расположение.

Сначала была рассмотрена простая эпидемия без случаев выздоровления. Для удобства использовалась решетка ограниченного размера, и информация о состоянии каждого индивидуума (т. е. восприимчив ли он к инфекции или является ее источником) хранилась в вычислительной машине. В процессе моделирования проводилась текущая запись изменений состояния всех индивидуумов и подсчитывалось общее число новых случаев заболевания во всех квадратах с первоначальным источником инфекции в центре. В памяти машины фиксировались также текущие значения суммы и суммы квадратов числа случаев. Это позволило довольно легко вычислить средние значения и средние квадратические ошибки. Детали этого исследования будут опубликованы в отдельной статье, а здесь мы отметим лишь одну-две частные особенности этой работы. Например, ясно, что при очень высокой вероятности достаточного контакта будет иметь место почти детерминированное распространение эпидемии, при котором на каждом новом этапе развития эпидемии будет добавляться новый квадрат с источниками инфекции.

При меньших вероятностях будет иметь место действительно стохастическое распространение эпидемии. Так как каждый источник инфекции может заразить только восемь своих ближайших соседей, а не всю популяцию, то можно ожидать, что эпидемическая кривая для всей решетки будет возрастать не столь резко, как при однородном перемешивании всей популяции. Этот прогноз действительно оправдывается, и число новых случаев увеличивается с течением времени более или менее линейно до тех пор, пока не начнут сказываться краевые эффекты (поскольку решетка имеет ограниченную протяженность).

Таблица 9. Пространственная стохастическая модель простой эпидемии, построенная на решетке 21x21

В табл. 9 приведены результаты, полученные для решетки при наличии одного исходного источника инфекции и вероятности достаточного контакта, равной 0,6. Можно видеть, что между первым и десятым этапами эпидемии среднее число новых случаев каждый раз увеличивается примерно на 7,5. После этого начинает преобладать краевой эффект, и эпидемическая кривая резко падает вниз.

Можно также определить среднее число новых случаев для любой данной точки решетки и найти таким образом эпидемическую кривую для этой точки. Удобно проводить усреднение по всем точкам, лежащим на границе квадрата, в центре которого находится источник инфекции, хотя симметрия в этом случае не будет полной. Сравнение результатов для квадратов различного размера дает картину эпидемической волны, движущейся от первоначального источника инфекции.

Здесь мы имеем последовательность распределений, моды которых увеличиваются в линейной прогрессии, а дисперсия непрерывно возрастает.

Было также выполнено более детальное исследование эпидемии общего типа с удалением зараженных индивидуумов. Безусловно, все это очень упрощенные модели. Однако важно понять, что они могут быть значительно усовершенствованы. Чтобы учесть мобильность популяции, надо допустить, что восприимчивые индивидуумы заражаются и от тех источников инфекции, которые не являются их ближайшими соседями. Возможно, здесь придется использовать какой-то весовой коэффициент, зависящий от расстояния. Видоизменения, которые нужно будет ввести при этом в программу вычислительной машины, сравнительно невелики. На следующем этапе, возможно, удастся описать таким способом реальные или типичные популяции с самой разнообразной структурой. Это откроет возможность оценивать эпидемиологическое состояние реальных популяций с точки зрения опасности возникновения эпидемий различного типа.

<< Предыдущий параграф Следующий параграф >>
Оглавление