Главная > Схемотехника > Микропроцессорные автоматические системы регулирования. Основы теории и элементы
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

10.3. ПОСТОЯННЫЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА

В микропроцессорных и других цифровых автоматических системах необходима память, которая служила бы источником информации, остающейся неизменной, в том числе и при отключении питания (списки констант таблицы, постоянные программы, микропрограммы и подпрограммы). В таких случаях используются модули памяти, в которых изменить записанную информацию невозможно средствами самок, использующей данный модуль системы. Эти модули называют постоянными ЗУ (ПЗУ). Таким образом, ПЗУ — это постоянное запоминающее устройство, содержимое которого не может быть заменено микропроцессором в ходе выполнения рабочей программы и сохраняется при снятии питания системы. В процессе обработки информации ПЗУ представляет собой память, работающую только в режиме считывания.

Применение ПЗУ позволяет достичь большей плотности упаковки информации за счет упрощения запоминающих элементов.

ПЗУ как устройство памяти в целом может работать в одном из двух режимов: чтение или программирование. Программированием ПЗУ называют процесс записи информации в него (в отличие от общепринятого понимания программирования как процесса составления программы).

Следует отметить, что обычно стремятся к тому, чтобы при программировании не требовалось никаких новых внешних линий, Отличных от используемых в модуле ПЗУ при работе в режиме чтения.

Программируемость памяти этого типа подразумевает существование множества некоторых коммутируемых элементов, с помощью которых можно установить или снять «перемычку», связывающую линию выборки элемента памяти или ячейки (строки) с линией считывания информации (разрядной линией). Коммутация определяется той информацией, которую должно хранить ПЗУ, а конкретная реализация «перемычек» и способ программирования зависят от типа ПЗУ.

По способу программирования выпускаемые полупроводниковые ПЗУ делятся на два типа: МПЗУ — масочные ПЗУ, в которых информация заносится (осуществляется программирование) в процессе изготовления масочным способом; создаются они на базе полевых или биполярных транзисторов;

ЭППЗУ — электрически программируемые ПЗУ, в которых информация может быть занесена электрическим способом, т. е. они допускают в особом режиме программирование или репрограммирование (перепрограммирование, повторное программирование) с помощью электрических сигналов. Их называют также ПЗУ, программируемые пользователем, так как они в отличие от масочных ПЗУ позволяют записать нужную информацию самому пользователю; в таких ПЗУ состояние перемычек можно задать уже после изготовления устройства либо создав, либо разрушив соединение.

По признаку кратности программирования ЭППЗУ можно разделить на ПЗУ с однократным программированием (ППЗУ) (за счет необратимых изменений их структуры) и ПЗУ с многократной сменой (репрограммированием) информации (РПЗУ).

Электрически программируемые ПЗУ (как ППЗУ, так и РПЗУ) стали неотъемлемыми компонентами МПАС. АСУТП и других систем, где требуется частая модификация программ. Программа обработки информации заносится в них электрическим способом и можем храниться там достаточно долго независимо от наличия или отсутствия питания.

По принципу записи информации ППЗУ можно разделить на две группы:

с пережиганием плавких перемычек; с пробоем перехода вполупроводнике, а РПЗУ — на три:

с формированием электрического заряда в двухслойном диэлектрике МНОП-структуры;

с лавинной инжекцией электрического заряда в область плавающего затвора МОП-структуры (ЛИПЗ МОП):

с изменением проводимости стеклообразного материала. Стирание информации в РПЗУ осуществляется двумя способами; электрическое стирание и воздействие ультрафиолетовыми (УФ) лучами.

Далее будут рассмотрены характерные черты указанных выше типов ПЗУ.

Масочные ПЗУ программируются на одном из последних технологических этапов их производства. Элементы коммутации представляют собой просто промежутки, часть которых перемыкается на этапе металлизации схемы. Это делается с помощью масок-фотошаблонов, задающих точную форму участков металлизации и изготовляемых по заказу для каждого конкретного наполнения ПЗУ, Маска довольно дорога, но с помощью одной маски можно запрограммировать любое число модулей памяти. Следовательно, ПЗУ, программируемые при помощи масок, экономически целесообразны при крупносерийном производстве.

Принцип действия ППЗУ основан на физических процессах, позволяющих необратимо изменять электрическое сопротивление участка цепи. Различают два типа однократно программируемых запоминающих элементов (ЗЭ): резисторный и диодный.

Бит информации, хранящейся в ЗЭ резисторного типа, определяется наличием или отсутствием плавкой перемычки. В состоянии после изготовления ЗЭ хранит 1 (сопротивление перемычки мало), а после пережигания плавкой перемычки — 0. В качестве плавких перемычек широко применяют тонкие пленки из нихрома или полукристаллического кремния (сопротивление перемычки составляет около 10 Ом).

Для работы в режиме программирования необходимо предусмотреть средства для избирательного пережигания перемычек. Обычно используется дополнительный внешний источник повышенного напряжения питания. Через перемычку пропускают импульс тока (плотностью около ), в результате чего она необратимо разрушается.

Работа ЗЭ диодного типа основана на необратимых явлениях, происходящих при пробое обратносмещенного -перехода. В исходном состоянии ЗЭ диодного типа хранит 0 (его обратное сопротивление очень велико). При программировании к диоду прикладывается запирающее напряжение повышенного уровня, под действием которого -переход пробивается, т. е. происходит короткое замыкание, что соответствует записи логической единицы.

Если сравнивать ППЗУ на принципе пережигания нихромовых перемычек и пробоя перехода в полупроводнике, то надо иметь в виду, что процесс пережигания остается сложным и не всегда обеспечивает требуемую надежность, поскольку частички металла, попадая на соседние участки, могут вызывать короткое замыкание или паразитные утечки, а также явиться причиной скрытых дефектов, которые проявляются в процессе эксплуатации.

Репрограммируемые ПЗУ можно программировать, стирать информацию и относительно быстро (за ограниченное время) программировать заново. В них используются элементы коммутации, которые можно устанавливать в одио состояние групповым способом (т. е. все сразу), а в другое — избирательно. Репрограммирование таких ПЗУ сводится сначала к групповой установке всех «перемычек» в одно состояние, что равносильно стиранию ранее записанной информации, и последующей избирательной (поочередной) установке нужных «перемычек» в другое состояние.

Репрограммируемые ПЗУ обычно строятся на принципах сохранения заряда в диэлектрике: в МНОП-структуре (металл—нитрид кремния—оксид кремния—полупроводник), представляющей собой МОП-транзистор, у которого затвор (металлический) отделен от кремниевой подложки диэлектриком, состоящим из двух слоев; в МОП-структуре с использованием эффекта лавинной инжекции электрического заряда в область плавающего (изолированного) затвора (ЛИПЗ МОП).

Другое направление создания РПЗУ, которое признается в настоящее время более перспективным, основано, на обратимых изменениях физической структуры материала, в частности используется свойство порогового переключения аморфных полупроводников.

РПЗУ на МНОП-технологии имеют следующие преимущества: большое допустимое число циклов перепрограммирования ; электрическое стирание. К недостаткам следует отнести: ограниченное время хранения информации (в выключенном состоянии не более 2—10 тыс. ч, в режиме непрерывного считывания — 200 — 500 ч): высокие амплитуда и длительность импульсов перепрограммирования (25-36 В, 5-100 мс), ограниченное время считывания .

Для ЛИПЗ МОП-технологии характерны следующие достоинства: повышенное быстродействие (до 0,1 мкс); большая информационная емкость (до 65—128 К бит); длительное время хранения информации в выключенном и включенном состоянии (до 10 лет). Недостатками являются: ограниченное число циклов перепрограммирования (10—100) и применение УФ-излучения при стирании.

Структура БИС РПЗУ такого типа, например К573РФ13 (К573РФ1) содержит: матрицу-накопитель; регистр; дешифратор адреса; усилители считывания. Структура памяти (организация накопителя) 1024 х 8. время выборки 900 не. Стирание информации производится ультрафиолетовым облучением кристалла микросхемы через окно в крышке корпуса. Количество циклов перепрограммирования около 100. РПЗУ способны сохранять заряд при отключенном питании в течение 2-3 тыс. ч.

РПЗУ с электрическим стиранием обладают рядом эксплуатационных достоинств, особенно важных для экспериментальных систем:

простота программирования блоков памяти в составе систем; возможность дистанционной смены содержания; практически неограниченное число циклов перезаписи; достаточное для большинства экспериментальных задач время хранения информации (3—10 тыс. ч).

Развитие РПЗУ обоих типов (с электрическим и УФ-стиранием) ведет в конечном итоге к получению схем. обладающих достоинствами как первого, так и второго

Перспективы разработки и применения ЭП ПЗУ. Анализ отечественных и зарубежных работ в области МТ показывает, что значение различных видов памяти при создании МПАС все более возрастает. В перспективе архитектуру информационно-вычислительной основы МПАС можно представить в виде подсистемы памяти, которая будет рассматриваться как центральная (и основная) подсистема. и ряда других подсистем.

ПЗУ позволяют в полной мере реализовать основные идеи, лежащие в основе МТ:

возможность хранения программы обработки информации в

компактной и надежной физической среде — в кристалле кремния;

универсальность и гибкость системы, возможность быстро и просто модифицировать эту программу столько раз, сколько потребуется в ходе разработки и отладки системы, возможность полной перестройки системы на решение новой задачи без изменения аппаратной части, исключительно за счет смены информации, хранящейся в памяти;

энергонезависимость хранения программы, свойственная всем ПЗУ, возможность использования МП как встроенного съемного модуля в различных агрегатах, механизмах, устройствах, системах и пр.

Особенно эффективно применение программируемых ПЗУ на стадии отладки ПО МПС. Отладка и оптимизация некоторой программы в общем случае требуют нескольких десятков ее прогонов в системе, а каждый такой прогон требует записи в ПЗУ нового варианта программы. Наличие ПЗУ, которое можно быстро репрограммировать при помощи стандартных адресных сигналов, значительно упрощает процедуру отладки и оптимизации программ. Поэтому в системы отладки МПС и в так называемые прототипные комплекты обязательно входят ЭГШЗУ. После завершения всех этапов отладки ПО, при сборке промышленных образцов систем эти ПЗУ могут быть замечены более компактными и дешевыми стандартными ПЗУ. программируемыми масочным способом при изготовлении. В этих ПЗУ предусматривают идентичные с ЭППЗУ разводу выводов, уровни сигналов и питающих напряжений.

При другом подходе ЭППЗУ могут быть использованы на этапе опытного производства при выпуске мелких партий. Такой подход может оказаться экономически более выгодным, поскольку масочное программирование ПЗУ требует больших затрат времени и средств, которые окупаются лишь при крупносерийном производстве.

Перспективны ЭППЗУ и в областях, где требуется дистанционное ренрограччирование МПС, установленной в недоступных или опасных для человека местах, например, в ядерных реакторах, в морских глубинах, в космосе. Сигналы репрограммирования могут быть при этом переданы стандартными радиотехническими средствами на огромные расстояния.

Именно ЭППЗУ позволят физически воплотить такие качества информационных систем, как адаптивность, способность к обучению, переобучению и самообучению.

Большие возможности для создания гибких средств автоматики открываются благодаря применению ЭППЗУ в программируемых логических матрицах (ПЛМ). Ранее ПЛМ для реализации заданной логической функции программировались на стадии изготовления.

Все более широко будут применяться ПЗУ для хранения операционных систем. Без быстрого прогресса в разработке и применении различных видов постоянной памяти не могут быть созданы по-настоящему надежные, компактные и экономичные средства обработки информации и управления.

Разнообразие требований, предъявляемых к БИС ЭППЗУ, и все возрастающий интерес к этим приборам обусловили разработку элементов и схем, отличающихся большим разнообразием физических принципов, технологии изготовления и технических характеристик. Это ставит перед разработчиками МПАС определенные задачи при поиске оптимальных решений — они должны хорошо ориентироваться в этом разнообразии ЗУ.

Программирование ЭППЗУ включает в себя формирование адресов, записывающих импульсов и контроль записанной информации. Объектом программирования могут быть отдельная БИС, группа БИС, программируемых одновременно, блок памяти, состоящий из некоторого числа БИС.

В зависимости от необходимости и экономической целесообразности программирование ЭППЗУ может быть автоматизировано в самой различной степени и осуществляться на установках большей или меньшей сложности.

Программаторы ЭППЗУ классифицируют по:

степени универсальности по отношению к различным типам БИС ЭППЗУ;

производительности — числу одновременно программируемых БИС;

способу управления процессом программирования (ручные, полуавтоматические и автоматические программаторы);

функциональной законченности (различают программаторы автономные и работающие под управлением мини- или микроЭВМ, не входящей в состав программатора);

конструктивному выполнению (программатор может быть выполнен в виде отдельного прибора, программирующей платы, входящей в состав ЭВМ, либо программирующего узла на плате памяти).

Простейший программатор ручного типа содержит тумблеры для набора адреса и данных, формирователи адресного кода, сигналов управления и записи. Такой прибор очень прост в работе, может быть изготовлен в любой лаборатории, но его производительность чрезвычайно низка, поэтому он пригоден для обработки БИС малой информационной емкости, притом небольшими партиями. Процесс программирования при этом медленный, ненадежный, утомительный для оператора. В более сложных программаторах ручного типа возможна индикация адреса и данных в двоичном, десятичном либо шестнадцатеричном коде, а также контроль содержимого ЭППЗУ.

Программируемая логическая матрица (ПЛМ). Представляет собой матрицу вентилей, которую можно запрограммировать в виде различных комбинаций вентилей, реализующих логические функции ИЛИ и И. На их основе могут составляться сложные комбинационные логические схемы. ПЛМ отличаются от ПЗУ только структурой и выпускаются в виде устройств, программируемых маской, и устройств, программируемых пользователем.

На базе такой матрицы могут быть организованы конъюнктивная матрица, реализующая функции И, и дизъюнктивная матрица, реализующая функции ИЛИ.

Реализация более сложных функций возможна при объединении обеих матриц. При подключении к ПЛМ дешифратора полученная схема может выполнять функции ПЗУ.

Такое сочетание выгодно применять при построении устройств памяти небольшой емкости, в которых емкость ПЗУ используется не полностью и поэтому расходы на ПЗУ не оправдываются.

ПЛМ можно также применять как фиксированную схему управления, которая дает возможность значительно увеличить быстродействие всей системы. Это объясняется тем, что ПЛМ является комбинационной схемой с высоким быстродействием.

ПЛМ изготовляется в виде интегральной однокорпусной схемы.

ПЗУ, ППЗУ, ПЛМ могут быть эффективно использованы при создании МПС. реализующих табличные и таблично-алгоритмические методы обработки информации. Использование табличных процессоров представляется весьма перспективным при создании специализированных «функциональных расширителей» на серийной элементной базе — БИС ОЗУ, ПЗУ, ППЗУ и ПЛМ.

<< Предыдущий параграф Следующий параграф >>
Оглавление