1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
Макеты страниц
§ 8. Основная задача линейного программированияЛюбую задачу линейного программирования можно свести к стандартной форме, так называемой «основной задаче линейного программирования» (ОЗЛП), которая формулируется так: найти неотрицательные значения переменных и обращали бы в максимум линейную функцию этих переменных: Убедимся в этом. Во-первых, случай, когда L надо обратить не в максимум, а в минимум, легко сводится к предыдущему, если попросту изменить знак L на обратный (максимизировать не L, а Пусть требуется найти неотрицательные значения переменных и обращающие в максимум линейную функцию от этих переменных: Начнем с того, что приведем условия (8.3) к стандартной форме, так, чтобы знак неравенства был а справа стоял нуль. Получим: А теперь обозначим левые части неравенств (8.5) соответственно через Из условий (8.5) и (8.6) видно, что новые переменные Какая же теперь перед нами стоит задача? Найти неотрицательные значения переменных Переход к ней от первоначальной задачи с ограничениями-неравенствами (8.3) «куплей» ценой увеличения числа переменных на два (число неравенств). Возможен и обратный переход: от ОЗЛП к задаче с ограничениями-неравенствами. Пусть перед нами основная задача линейного программирования с ограничениями-равенствами (8.1). Предположим, что среди этих Итак, всякая задача линейного программирования может быть сведена к стандартной форме ОЗЛП. Мы не будем подробно останавливаться на способах решения этой задачи. Им посвящены специальные руководства (например, [4, 53), они описаны во многих книгах по исследованию операций (например, [6, 7]). В следующем параграфе мы изложим только некоторые соображения общего характера относительно существования решения ОЗЛП и способов его нахождения. Никакими расчетными алгоритмами мы заниматься не будем, а отошлем интересующегося читателя к вышеупомянутым руководствам.
|
Оглавление
|