1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
Макеты страниц
§ 19. Схема гибели и размножения. Формула Литтла1. Схема гибели и размножения.Мы знаем, что имея в распоряжении размеченный граф состояний, можно легко написать уравнения Колмогорова для вероятностей состояний, а также написать и решить алгебраические уравнения для финальных вероятностей. Для некоторых случаев удается последние уравнения решить заранее, в буквенном виде. Рис. 19.1. В частности, это удается сделать, если граф состояний системы представляет собой так называемую «схему гибели и размножения». Граф состояний для схемы гибели и размножения имеет вид, показанный на рис. 19.1. Особенность этого графа в том, что все состояния системы можно вытянуть в одну цепочку, в которой каждое из средних состояний Схема гибели и размножения очень часто встречается в разных задачах практики, в частности — в теории массового обслуживания, поэтому полезно, один раз и навсегда, найти для нее финальные вероятности состояний. Предположим, что все потоки событий, переводящие систему по стрелкам графа, — простейшие (для краткости будем называть и систему S и протекающий в ней процесс — простейшими). Пользуясь графом рис. 19.1, составим и решим алгебраические уравнения для финальных вероятностей состояний (их существование вытекает из того, что из каждого состояния можно перейти в каждое другое, и число состояний конечно). Для первого состояния Для второго состояния В силу (19.1) последнее равенство приводится к виду далее, совершенно аналогично и вообще где к принимает все значения от 0 до п. Итак, финальные вероятности кроме того, надо учесть нормировочное условие Решим эту систему уравнений. Из первого уравнения (19.2) выразим Из второго, с учетом (19.4), получим; из третьего, с учетом (19.5), и вообще, для любого к (от 1 до Обратим внимание на формулу (19.7). В числителе стоит произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо (с начала и до данного состояния Таким образом, все вероятности состояний отсюда получим выражение для (скобку мы возвели в степень —1, чтобы не писать двухэтажных дробей). Все остальные вероятности выражены через Полученные формулы очень полезны при решении простейших задач теории массового обслуживания. 2. Формула Литтла. Теперь мы выведем одну важную формулу, связывающую (для предельного, стационарного режима) среднее число заявок Рассмотрим любую СМО (одноканальную, многоканальную, марковскую, немарковскую, с неограниченной или с ограниченной очередью) и связанные с нею два потока событий: поток заявок, прибывающих в СМО, и поток заявок, покидающих СМО. Если в системе установился предельный, стационарный режим, то среднее число заявок, прибывающих в СМО за единицу времени, равно среднему числу заявок, покидающих ее: оба потока имеют одну и ту же интенсивность Обозначим: Рис. 19.2. И та, и другая функции являются случайными и меняются скачком (увеличиваются на единицу) в моменты приходов заявок Рассмотрим очень большой промежуток времени Т (мысленно продолжив график далеко за пределы чертежа) и вычислим для него среднее число заявок, находящихся в СМО. Оно будет равно интегралу от функции Но этот интеграл представляет собой не что иное, как площадь фигуры, заштрихованной на рис. 19.2. Разглядим хорошенько этот рисунок. Фигура состоит из прямоугольников, каждый из которых имеет высоту, равную единице, и основание, равное времени пребывания в системе соответствующей заявки (первой, второй и т. д.). Обозначим эти времена h, Если да, под конец промежутка Т некоторые прямоугольники войдут в заштрихованную фигуру не полностью, а частично, но при достаточно большом Т эти мелочи не будут играть роли. Таким образом, можно считать, что
где сумма распространяется на все заявки, пришедшие за время Т. Разделим правую и левую часть (19.10) на длину интервала Т. Получим, с учетом (19.9),
Разделим и умножим правую часть (19.11) на интенсивность Но величина ТХ есть не что иное, как среднее число заявок, пришедших за время Г. Если мы разделим сумму всех времен U на среднее число заявок, то получим среднее время пребывания заявки в системе откуда
Это и есть замечательная формула Литтла: для любой СМО, при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в системе равно среднему числу заявок в системе, деленному на интенсивность потока заявок. Точно таким же образом выводится вторая формула Литтла, связывающая среднее время пребывания заявки в очереди
Для вывода достаточно вместо нижней линии на рис. 19.2 взять функцию Формулы Литтла (19.12) и (19.13) играют большую роль в теории массового обслуживания. К сожалению, в большинстве существующих руководств эти формулы (доказанные в общем виде сравнительно недавно) не приводятся
|
Оглавление
|