1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
Макеты страниц
§ 20. Простейшие системы массового обслуживания и их характеристикиВ этом параграфе мы рассмотрим некоторые простейшие СМО и выведем выражения для их характеристик (показателей эффективности). При этом мы продемонстрируем основные методические приемы, характерные для элементарной, «марковской» теории массового обслуживания. Мы не будем гнаться за количеством образцов СМО, для которых будут выведены конечные выражения характеристик; данная книга — не справочник по теории массового обслуживания (такую роль гораздо лучше выполняют специальные руководства). Наша цель — познакомить читателя с некоторыми «маленькими хитростями», облегчающими путь сквозь теорию массового обслуживания, которая в ряде имеющихся (даже претендующих на популярность) книг может показаться бессвязным набором примеров. Все потоки событий, переводящие СМО из состояния в состояние, в данном параграфе мы будем считать простейшими (не оговаривая это каждый раз специально). В их числе будет и так называемый «поток обслуживаний». Под ним разумеется поток заявок, обслуживаемых одним непрерывно занятым каналом. В этом потоке интервал между событиями, как и всегда в простейшем потоке, имеет показательное распределение (во многих руководствах вместо этого говорят: «время обслуживания — показательное», мы и сами в дальнейшем будем пользоваться таким термином). В данном параграфе показательное распределение времени обслуживания будет само собой разуметься, как всегда для «простейшей» системы. Характеристики эффективности рассматриваемых СМО мы будем вводить по ходу изложения. 1. n-канальная СМО с отказами (задача Эрланга).Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в начале нашего века датским математиком Эрлангом. Задача ставится так: имеется А — абсолютную пропускную способность, т. е. среднее число заявок, обслуживаемых в единицу времени;
Ротк — вероятность отказа, т. е. того, что заявка покинет СМО необслуженной; к — среднее число занятых каналов. Решение. Состояния системы S (СМО) будем нумеровать по числу заявок, находящихся в системе (в данном случае оно совпадает с числом занятых каналов):
Граф состояний СМО соответствует схеме гибели и размножения (рис. 20.1). Разметим этот граф — проставим у стрелок интенсивности потоков событий, Из Рис. 20.1., Тот же поток заявок переводит систему из любого левого состояния в соседнее, правое (см. верхние стрелки на рис. 20.1). Проставим интенсивности у нижних стрелок. Пусть система находится в состоянии А теперь, зная все интенсивности, воспользуемся уже готовыми формулами (19.7), (19.8) для финальных вероятностей в схеме гибели и размножения. По формуле (19.8) получим: Члены разложения Заметим, что в формулы (20.1), (20.2) интенсивности Яиц входят не по отдельности, а только в виде отношения и будем называть величину Формулы (20.4), (20.5) для финальных вероятностей состояний называются формулами Эрланга — в честь основателя теории массового обслуживания. Большинство других формул этой теории (сегодня их больше, чем грибов в лесу) не носит никаких специальных имен. Таким образом, финальные вероятности найдены. По ним мы вычислим характеристики эффективности СМО. Сначала найдем Отсюда находим относительную пропускную способность — вероятность того, что заявка будет обслужена: Абсолютную пропускную способность получим, умножая интенсивность потока заявок X на Осталось только найти среднее число занятых каналов к. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями Подставляя сюда выражения (20.5) для или, учитывая (20.8), Рекомендуем читателю самостоятельно решить пример. Имеется станция связи с тремя каналами Из ответов видно, между прочим, что наша СМО в значительной мере перегружена: из трех каналов занято в среднем около двух, а из поступающих заявок около 35% остаются необслуженными. Предлагаем читателю, если он любопытен и неленив, выяснить: сколько потребуется каналов для того, чтобы удовлетворить не менее 80% поступающих заявок? И какая доля каналов при этом будет простаивать? Тут уже проглядывает некоторый намек на оптимизацию. В самом деле, содержание каждого канала в единицу времени обходится в какую-то сумму. Вместе с тем, каждая обслуженная заявка приносит какой-то доход. Умножая этот доход на среднее число заявок А, обслуживаемых в единицу времени, мы получим средний доход от СМО в единицу времени. Естественно, при увеличении числа каналов этот доход растет, но растут и раеходы, связанные с содержанием каналов. Что перевесит — увеличение доходов или расходов? Это зависит от условий операции, от «платы за обслуживание заявки» и от стоимости содержания канала. Зная эти величины, можно найти оптимальное число каналов, наиболее эффективное экономически. Мы такой задачи решать не будем, предоставляя все тому же «неленивому
|
Оглавление
|