1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
Макеты страниц
§ 7. ФОТОМЕТРИЯСлово «фотометрия» означает «измерение света». С помощью фотометрического метода мы измеряем интенсивность света, приходящего к нам от небесных тел. В области изучения планет фотометрический метод позволяет решать следующие задачи: 4. Измерение блеска планеты, т. е. той освещенности, которую свет планеты создает в точке наблюдения. Результат обычно выражают в виде звездной величины 2. Определение альбедо — величины, выражающей среднюю отражательную способность обращенного к Земле полушария планеты. 3. Оценка вероятных размеров спутников планет и астероидов по их блеску и принятому значению альбедо. 4. Исследование вращения малых планет по периодическим колебаниям их блеска. 5. Изучение распределения яркости по планетным дискам, что позволяет получить карту отражательной способности видимой поверхности планеты. Фотометрия обычно подразделяется на точечную и поверхностную. Точечная фотометрия занимается измерением блеска звезд и других точечных источников света, в качестве которых можно рассматривать и планеты благодаря их незначительным угловым диаметрам (если не применять больших увеличений). Из перечисленных выше задач к области точечной фотометрии относятся первые четыре. Поверхностная фотометрия изучает яркость светящихся или освещенных поверхностей, например, поверхности Солнца, Луны, планет, а также комет и туманностей. В применении к планетам методы поверхностной фотометрии, о которых будет рассказано ниже, позволяют решать пятую задачу. Рассмотрим, от чего зависит блеск планеты. Как было указано, блеск является мерой освещенности, создаваемой светилом на Земле. Точнее, блеск равен освещенности поверхности, расположенной в точке наблюдения перпендикулярно к лучам светила. Так как планеты в свою очередь освещаются Солнцем и отражают его лучи, нам придется познакомиться с законами отражения света шарообразными телами, освещаемыми извне. Допустим, что планета находится на расстоянии При этом условии сила света планеты будет прямо пропорциональна силе света Солнца Здесь коэффициент пропорциональности Г выражает Если угол фазы Как доказывается в теоретической фотометрии, функция угла фазы планеты Поверхности и атмосферы планет отражают свет по особым законам, изучение которых тоже является одной из задач фотометрии поверхностей планет (оно входит в пятую задачу). Обычно функцию фазы выражают формулой где Мерой отражательной способности планеты чаще всего служит так называемое сферическое альбедо А, которое представляет собой отношение количества света, рассеянного планетой по всем направлениям, к количеству упавшего на нее света (за единицу времени). Эта величина — одна из основных в планетной фотометрии. С коэффициентом Г она связана соотношением Множитель Зная блеск Сравнение альбедо планет, а также Луны, крупных спутников и астероидов показало, что его значение зависит от присутствия атмосферы и от ее плотности. Тела, не имеющие атмосферы, имеют, как правило низкое альбедо, что хорошо видно из табл. 4, где в левой половине приведены значения альбедо планет, окруженных атмосферами, а в правой половине — планет, лишенных атмосфер (в том числе Луны). Мы видим, что малые тела, лишенные атмосферы, имеют альбедо, в среднем равное 0,07 (если не считать Весты). Это дает основание принять для всех малых спутников и астероидов среднее значение альбедо 0,07 и находить, таким образом, их диаметры. Таблица 4 Конечно, оценка получается довольно грубая, и в ряде случаев полученные по этой оценке диаметры планет могут сильно отличаться от истинных. Так, нацример, альбедо Весты равно 0,229, т. е. почти в четыре раза больше среднего значения. Если бы мы вычислили ее диаметр, руководствуясь описанным выше методом, мы получили бы его вдвое больше, чем следует из непосредственных измерений. Можно дать формулу, непосредственно связывающую диаметр планеты с ее так называемой абсолютной звездной величиной g, т. е. той звездной величиной, которую имела бы планета, если бы ее расстояния от Солнца и от Земли равнялись 1 астрономической единице (149 597 870 км), а угол фазы Абсолютная звездная величина связана с видимой величиной при Для многих планет, спутников и особенно астероидов обнаружены периодические колебания их блеска, связанные, по-видимому, с их вращением вокруг оси. Фотометрические наблюдения Урана позволили П. П. Паренаго в 1928 г. определить период его вращения в хорошем согласии с другими методами. Аналогичные работы выполнены и для Нептуна. Среди спутников наиболее резкие изменения блеска наблюдаются у Япета, восьмого спутника Сатурна. Когда Япет находится в наибольшем видимом удалении к западу от Сатурна, он кажется на 1,8 звездной величины (т. е. почти в пять раз) ярче, чем в наибольшем удалении к востоку от планеты. Это наводит на мысль, что Япет подобно Луне обращен к своей планете одной стороной, а к Земле обращается поочередно то более светлой, то более темной половиной (рис. 6). Рис. 6. Объяснение изменений блеска Япета. Такое предположение имеет тем большее основание, что синхронное вращение (с периодом, равным времени обращения вокруг планеты) наблюдается и у четырех галилеевых спутников Юпитера (см. § 18). Из астероидов многие обнаруживают периодические, а иногда и неправильные колебания блеска. Таковы Веста, Эвномия, Терцидина, Эрот. Для малых астероидов причиной этих колебаний может быть их неправильная форма. Например, Эрот, по-видимому, имеет форму бруска 36 км в длину и 13—15 км в ширину и толщину. Для более крупных астероидов, например, для Весты, такое объяснение принять трудно: по-видимому, здесь дело сводится к различной отражательной способности разных частей поверхности планеты. Для непосредственного измерения видимого блеска планет применяются приборы, называемые фотометрами. Некоторые фотометры построены на принципе выравнивания блеска двух источников света, из которых один наблюдаемый, а другой искусственный с известным блеском. По такому принципу построены многочисленные варианты визуальных звездных фотометров. В приборах такого типа наблюдатель видит в поле зрения искусственную «звезду сравнения», видимый блеск которой можно менять при помощи клина, диафрагмы с переменным отверстием, поляризационной системы или иного приспособления. Наблюдение состоит в том, что телескоп наводят на наблюдаемый объект (звезду, астероид, спутник) так, чтобы он располагался в поле зрения рядом со звездой сравнения. Блеск последней постепенно меняют и доводят до равенства с видимым блеском объекта. Такая установка на равенство блеска двух точечных объектов делается с точностью до Для визуального измерения яркости различных участков диска светила, имеющего достаточно большие угловые размеры, применяются поверхностные фотометры. В приборе такого рода лучи электрической лампы дают не звезду, а площадку равномерной яркости. Наблюдатель видит в поле зрения телескопа это «поле сравнения» и располагает его на фоне наблюдаемого объекта, например лунного моря, диска Венеры, материка Марса. Действуя фотометрическим приспособлением (клин и т. п.), он добивается точного равенства яркости. Если при этом нет разницы в цвете, то поле сравнения совсем исчезает, сливаясь с фоном измеряемого объекта. В таком случае точность установок на равенство яркости может достигать 1—2%. Изучение распределения яркости по диску планеты можно производить и фотографическим методом. Этот способ имеет то преимущество, что все участки поверхности планеты фотографируются одновременно, т. е. в одинаковых условиях, тогда как визуальные оценки производятся последовательно, что не исключает изменения атмосферных условий во время наблюдений. Однако фотографическая фотометрия имеет и свои недостатки. Основной недостаток — зернистое строение фотоэмульсии, приводящее к тому, что неравномерность расположения отдельных зерен при небольшом масштабе изображений планет может в значительной степени повлиять на результаты измерений. Кроме того, источником ошибок могут быть неравномерное действие проявителя, ореолы, дрожание изображения и ряд других причин. При фотографической фотометрии яркости тех или иных частей диска планеты определяются по тем почернениям, которые свет от них производит на пластинке. Для того, чтобы можно было перевести почернения в яркости, необходимо впечатать на ту же пластинку калибровочную шкалу, т. е. ряд площадок с известным изменением; яркости от одной к другой, или полосу с непрерывным падением яркости от одного конца к другому по известному закону. Рис. 7. Характеристическая кривая фотопластинки. Измеряя почернения калибровочной шкалы, можно построить для данной пластинки характеристическую кривую, которая дает зависимость между почернением и яркостью (рис. 7). При помощи этой кривой и производится перевод почернений в яркости. От точности построения характеристической кривой и ее постоянства для данной пластинки зависит и точность получаемых результатов. Не входя в подробности, укажем, что точность фотографической фотометрии не превышает 5—7%. Наиболее точным является фотоэлектрический метод определения блеска и яркости планет, когда интенсивность света от планеты регистрируется фотоэлектрическим фотометром В качестве приемников излучения используются фотоэлементы с калиевым, сурьмяно-цезиевым и кислородно-цезиевым катодом или фотоэлектронные умножители (см. § 30). Оптическая система фотометра позволяет сравнивать блеск светила со стандартным источником света. Ток от фотоэлемента после усиления измеряется чувствительным гальванометром или потенциометром, показания которого переводятся потом в единицы блеска. Точность фотоэлектрического метода достигает ±001 звездной величины. На ряде обсерваторий были выполнены многочисленные фотоэлектрические измерения блеска Марса, Урана, Нептуна, Плутона, спутников Юпитера и многих астероидов. Фотоэлектрический метод был использован и для поверхностной фотометрии дисков планет. Он широко применяется и в спектральном анализе, о чем будет сказано ниже. К фотометрическим методам вплотную примыкает поляриметрический метод, основанный на измерении доли поляризованного света в общем количестве света, отраженного некоторым участком поверхности планеты. Так как степень поляризации отраженного света зависит от свойств отражающей поверхности, этот метод дает некоторое представление о строении поверхностей планет и об их атмосферах. Поляриметрия также бывает визуальная, фотографическая и фотоэлектрическая. Для измерения степени поляризации света планет применяется визуалыный поляриметр Либ—Савара, дающий точность до 0,1%. Применение поляриметрического метода, значительно усовершенствованного французским астрономом О. Дольфюсом, за последние годы дало много интересных результатов в изучении природы планет, в частности, различных деталей их поверхностей, свойств атмосфер и т. д.
|
Оглавление
|