ЕГЭ и ОГЭ
Живые анекдоты
Главная > Астрономия > Планеты и их наблюдение
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

ГЛАВА II. МЕТОДЫ ИССЛЕДОВАНИЯ ПЛАНЕТ

§ 4. ОПРЕДЕЛЕНИЕ МАСС И ДИАМЕТРОВ ПЛАНЕТ

При изучении планет с физической точки зрения прежде всего необходимо знать их размеры и массу. Зная то и другое, можно легко вычислить и среднюю плотность планеты.

Определение масс планет, имеющих спутники, производится на основании III закона Кеплера в его точной форме. Если М — масса Солнца, — массы планеты и спутника, — периоды обращения планеты вокруг Солнца и спутника вокруг планеты, — большие полуоси их орбит, то III закон Кеплера можно написать в таком виде:

Поскольку массы планет во много раз меньше массы Солнца, а массы спутников, как правило, ничтожны по сравнению с массами планет, мы можем пренебречь вторыми слагаемыми в скобках и получить отношение масс планеты и Солнца:

Зная массу Земли, мы по этой формуле можем найти массу Солнца, а затем и тех планет, у которых имеются спутники.

Определение масс планет, не имеющих спутников, а также масс самих спутников и астероидов представляет собой более трудную задачу.

Массы Меркурия и Венеры были первоначальна определены по тем возмущениям, которые они вызывают в движении других планет. Полеты к этим планетам космических аппаратов позволили существенно уточнить значения их масс по их воздействию на траекторию аппарата. Масса Плутона до последнего времени была известна лишь весьма приблизительно, и лишь недавно, после открытия спутника Плутона, ее удалось уточнить. Масса Луны была найдена по воздействию на Землю, под влиянием которого Земля описывает маленький эллипс вокруг их общего центра тяжести. Массы крупных спутников Юпитера можно определить по их взаимным возмущениям. Для остальных спутников, а также для астероидов приходится делать только приближенную оценку массы и диаметра по их блеску (см. § 7).

Линейный диаметр планеты легко определить, зная расстояние и измерив ее угловой диаметр. Так как угловые диаметры планет очень малы (меньше 1), мы можем написать:

где — расстояние планеты от Земли, d" — ее угловой диаметр, выраженный в секундах дуги, D — линейный диаметр.

Измерение угловых диаметров планет производится с помощью специального измерительного прибора — микрометра, помещаемого в фокусе телескопа; Наиболее употребительным является нитяной микрометр. Устройство его таково. На неподвижной рамке укреплены перпендикулярно друг к другу две тонкие нити. Вдоль рамки, в направлении горизонтальной нити, может перемещаться другая рамка с вертикальной нитью, параллельной вертикальной неподвижной нити. Движение этой нити осуществляется с помощью микрометрического винта, один оборот которого передвигает рамку на строго определенную величину (на так называемый шаг винта).

Для измерения углового диаметра планет микрометр поворачивается так, чтобы направление горизонтальной нити соответствовало измеряемому диаметру, поскольку у планет имеющих значительное сжатие, видимые диаметры, полярный и экваториальный, заметно отличаются друг от друга.

Точность измерения у длиннофокусных телескопов доходит до сотых долей секунды дуги.

С помощью нитяного микрометра измеряются не только угловые диаметры всех планет, имеющих видимые диски, но и их полярное сжатие, величина фазы, а также положение темных полос на Юпитере, протяженность полярных шапок Марса и т. д.

Другим прибором, применяемым для измерений угловых диаметров и фаз планет, является гелиометр. Он представляет собой телескоп-рефрактор, объектив которого распилен по диаметру пополам, причем обе половинки могут раздвигаться с помощью микрометрического винта вдоль их общего диаметра. Кроме того, вся система может поворачиваться вокруг оптической оси телескопа.

При раздвигании обеих половин объектива в окуляре вместо одного изображения планеты возникают два. Вращая микрометрический винт, можно добиться того, чтобы оба изображения планеты касались друг друга. Тогда, очевидно, одно из них будет смещено относительно другого как раз на величину углового диаметра планеты. Зная цену оборота винта гелиометра и произведя отсчет, мы получим нужную нам величину.

Понятно что гелиометр сложнее нитяного микрометра, так как требует специальной оптики, тогда как последний может быть приспособлен к любому телескопу. Кроме того, необходимость распиловки объектива гелиометра ограничивает его возможные размеры. Однако точность, с которой можно выполнять измерения, у гелиометра выше.

Измерения угловых диаметров планет можно производить и по фотопластинкам. В этом случае применяются лабораторные измерительные приборы, главными частями которых являются: столик, на который кладется пластинка, два микрометрических винта, перемещающих ее по двум взаимно перпендикулярным направлениям, и микроскоп для рассматривания планетных дисков, имеющих подчас очень малые размеры.

Чтобы перевести измеренные на пластинке величины в угловые единицы, надо знать масштаб снимка.

Если снимок получен в фокусе объектива, то его масштаб определяется соотношением

т. е. 1" на снимке имеет длину, равную 1/206 265 фокусного расстояния объектива. Для объектива с фокусным расстоянием 2 м это будет всего лишь 0,001 мм, а для самого длиннофокусного в мире рефрактора Йеркской обсерватории — около ОД мм.

Если фотографирование производится с дополнительным увеличением, например, при помощи окуляра, то нужно определить постоянную увеличительной системы, т. е. узнать, во сколько раз она увеличивает изображение. Эта величина дается формулой

где — фокусное расстояние окуляра, а г — его расстояние от пластинки при фотографировании. Надо сказать, что получение снимков планет с большим увеличением (более 10 раз) ограничивается уменьшением освещенности изображения (см. ниже § 6).

При серьезных работах вместо обычных окуляров для увеличения размеров изображения используют специальные оптические системы. Например, можно применить вогнутую (рассеивающую) линзу (линзу Барлоу), которая уменьшает угол схождения лучей и тем самым как бы увеличивает фокусное расстояние объектива, а стало быть, и размеры изображения планеты. Следует отметить, что вообще диски планет на фотографиях весьма невелики. Так, например, на снимках Марса, полученных в 1909 г. Г. А. Тиховым с 30-дюймовым рефрактором Пулковской обсерватории (F=14 м), диаметр изображения планеты равен примерно 1,5 мм. При использовании увеличительной системы даже со столь крупными телескопами можно получить диск Марса размером в 8—10 мм, а диск Юпитера — до 15 мм.

В таблице 3 даны угловые диаметры планет и некоторых спутников при их наименьшем и наибольшем расстоянии от Земли.

Для крупнейшего в мире рефрактора предел точности измерений теоретически равен но в реальных условиях наблюдений, из-за неспокойствия атмосферы и других искажений, он возрастает до

Таблица 3

Поэтому, как видно из табл. 3, Плутон среди больших планет, Тритон среди спутников и Юнона среди малых планет лежат на пределе возможности измерения из угловых диаметров.

Как уже говорилось выше, для оценки размеров небольших или удаленных от нас тел (спутников, астероидов) приходится применять косвенные способы, главным образом фотометрические (см. § 7).

<< Предыдущий параграф Следующий параграф >>
Оглавление