1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
Макеты страниц
ГЛАВА II. МЕТОДЫ ИССЛЕДОВАНИЯ ПЛАНЕТ§ 4. ОПРЕДЕЛЕНИЕ МАСС И ДИАМЕТРОВ ПЛАНЕТПри изучении планет с физической точки зрения прежде всего необходимо знать их размеры и массу. Зная то и другое, можно легко вычислить и среднюю плотность планеты. Определение масс планет, имеющих спутники, производится на основании III закона Кеплера в его точной форме. Если М — масса Солнца, Поскольку массы планет во много раз меньше массы Солнца, а массы спутников, как правило, ничтожны по сравнению с массами планет, мы можем пренебречь вторыми слагаемыми в скобках и получить отношение масс планеты и Солнца: Зная массу Земли, мы по этой формуле можем найти массу Солнца, а затем и тех планет, у которых имеются спутники. Определение масс планет, не имеющих спутников, а также масс самих спутников и астероидов представляет собой более трудную задачу. Массы Меркурия и Венеры были первоначальна определены по тем возмущениям, которые они вызывают в движении других планет. Полеты к этим планетам космических аппаратов позволили существенно уточнить значения их масс по их воздействию на траекторию аппарата. Масса Плутона до последнего времени была известна лишь весьма приблизительно, и лишь недавно, после открытия спутника Плутона, ее удалось уточнить. Масса Луны была найдена по воздействию на Землю, под влиянием которого Земля описывает маленький эллипс вокруг их общего центра тяжести. Массы крупных спутников Юпитера можно определить по их взаимным возмущениям. Для остальных спутников, а также для астероидов приходится делать только приближенную оценку массы и диаметра по их блеску (см. § 7). Линейный диаметр планеты легко определить, зная расстояние и измерив ее угловой диаметр. Так как угловые диаметры планет очень малы (меньше 1), мы можем написать: где Измерение угловых диаметров планет производится с помощью специального измерительного прибора — микрометра, помещаемого в фокусе телескопа; Наиболее употребительным является нитяной микрометр. Устройство его таково. На неподвижной рамке укреплены перпендикулярно друг к другу две тонкие нити. Вдоль рамки, в направлении горизонтальной нити, может перемещаться другая рамка с вертикальной нитью, параллельной вертикальной неподвижной нити. Движение этой нити осуществляется с помощью микрометрического винта, один оборот которого передвигает рамку на строго определенную величину (на так называемый шаг винта). Для измерения углового диаметра планет микрометр поворачивается так, чтобы направление горизонтальной нити соответствовало измеряемому диаметру, поскольку у планет имеющих значительное сжатие, видимые диаметры, полярный и экваториальный, заметно отличаются друг от друга. Точность измерения у длиннофокусных телескопов доходит до сотых долей секунды дуги. С помощью нитяного микрометра измеряются не только угловые диаметры всех планет, имеющих видимые диски, но и их полярное сжатие, величина фазы, а также положение темных полос на Юпитере, протяженность полярных шапок Марса и т. д. Другим прибором, применяемым для измерений угловых диаметров и фаз планет, является гелиометр. Он представляет собой телескоп-рефрактор, объектив которого распилен по диаметру пополам, причем обе половинки могут раздвигаться с помощью микрометрического винта вдоль их общего диаметра. Кроме того, вся система может поворачиваться вокруг оптической оси телескопа. При раздвигании обеих половин объектива в окуляре вместо одного изображения планеты возникают два. Вращая микрометрический винт, можно добиться того, чтобы оба изображения планеты касались друг друга. Тогда, очевидно, одно из них будет смещено относительно другого как раз на величину углового диаметра планеты. Зная цену оборота винта гелиометра и произведя отсчет, мы получим нужную нам величину. Понятно что гелиометр сложнее нитяного микрометра, так как требует специальной оптики, тогда как последний может быть приспособлен к любому телескопу. Кроме того, необходимость распиловки объектива гелиометра ограничивает его возможные размеры. Однако точность, с которой можно выполнять измерения, у гелиометра выше. Измерения угловых диаметров планет можно производить и по фотопластинкам. В этом случае применяются лабораторные измерительные приборы, главными частями которых являются: столик, на который кладется пластинка, два микрометрических винта, перемещающих ее по двум взаимно перпендикулярным направлениям, и микроскоп для рассматривания планетных дисков, имеющих подчас очень малые размеры. Чтобы перевести измеренные на пластинке величины в угловые единицы, надо знать масштаб снимка. Если снимок получен в фокусе объектива, то его масштаб определяется соотношением т. е. 1" на снимке имеет длину, равную 1/206 265 фокусного расстояния объектива. Для объектива с фокусным расстоянием 2 м это будет всего лишь 0,001 мм, а для самого длиннофокусного в мире рефрактора Йеркской обсерватории — около ОД мм. Если фотографирование производится с дополнительным увеличением, например, при помощи окуляра, то нужно определить постоянную увеличительной системы, т. е. узнать, во сколько раз она увеличивает изображение. Эта величина дается формулой где При серьезных работах вместо обычных окуляров для увеличения размеров изображения используют специальные оптические системы. Например, можно применить вогнутую (рассеивающую) линзу (линзу Барлоу), которая уменьшает угол схождения лучей и тем самым как бы увеличивает фокусное расстояние объектива, а стало быть, и размеры изображения планеты. Следует отметить, что вообще диски планет на фотографиях весьма невелики. Так, например, на снимках Марса, полученных в 1909 г. Г. А. Тиховым с 30-дюймовым рефрактором Пулковской обсерватории (F=14 м), диаметр изображения планеты равен примерно 1,5 мм. При использовании увеличительной системы даже со столь крупными телескопами можно получить диск Марса размером в 8—10 мм, а диск Юпитера — до 15 мм. В таблице 3 даны угловые диаметры планет и некоторых спутников при их наименьшем и наибольшем расстоянии от Земли. Для крупнейшего в мире рефрактора предел точности измерений теоретически равен Таблица 3 Поэтому, как видно из табл. 3, Плутон среди больших планет, Тритон среди спутников и Юнона среди малых планет лежат на пределе возможности измерения из угловых диаметров. Как уже говорилось выше, для оценки размеров небольших или удаленных от нас тел (спутников, астероидов) приходится применять косвенные способы, главным образом фотометрические (см. § 7).
|
Оглавление
|