Главная > Разное > Теоретические основы проектирования компьютерных сетей
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

1.8 Приоритетные системы массового обслуживания

Во всех рассмотренных выше СМО предполагалось, что все запросы, поступающие в систему - однородные, то есть, они имеют один и тот же закон распределения времени обслуживания и обслуживаются в системе согласно общей дисциплины выбора из очереди. Однако, во многих реальных системах запросы, поступающие в систему, неоднородны как по распределению времени обслуживания, так и по их ценности для системы и, следовательно, праву претендовать на первоочередное обслуживание в момент освобождения прибора. Такие модели исследуются в рамках теории приоритетных СМО. Эта теория довольно хорошо развита и ее изложению посвящено немало монографий (см., например, [68], [69], [13], и т.д.). Здесь мы ограничимся кратким описанием приоритетных систем и рассмотрим одну систему.

Рассмотрим однолинейную СМО с ожиданием. На вход системы поступают независимых простейших потоков, поток имеет интенсивность . Будем обозначать

Времена обслуживания запросов из потока характеризуются функцией распределения с преобразованием Лапласа - Стилтьеса и конечными начальными моментами

Запросы из потока назовем запросами приоритета к.

Считаем, что запросы из потока более приоритетны, чем запросы из потока, если Приоритетность проявляется в том, что в момент окончания обслуживания следующим на обслуживание выбирается из очереди запрос, имеющий максимальный приоритет. Запросы, имеющие один и тот же приоритет, выбираются согласно установленной дисциплине обслуживания, например, согласно дисциплине FIFO.

Рассматриваются различные варианты поведения системы в ситуации, когда во время обслуживания запроса некоторого приоритета в систему поступает запрос более высокого приоритета.

Система называется СМО с относительным приоритетом, если поступление такого запроса не прерывает обслуживание запроса. Если же такое прерывание происходит, то система называется СМО с абсолютным приоритетом. В этом случае, однако, требуется уточнить дальнейшее поведение запроса, обслуживание которого оказалось прерванным. Различают следующие варианты: прерванный запрос уходит из системы и теряется; прерванный запрос возвращается в очередь и продолжает обслуживание с места прерывания после ухода из системы всех запросов, имеющих более высокий приоритет; прерванный запрос возвращается в очередь и начинает обслуживание заново после ухода из системы всех запросов, имеющих более высокий приоритет. Прерванный запрос обслуживается прибором после ухода из системы всех запросов, имеющих более высокий приоритет, в течение времени, имеющего прежнее или некоторое другое распределение. Возможен вариант, когда требуемое время обслуживания в последующих попытках идентично времени, которое требовалось для полного обслуживания данного запроса в первой попытке.

Таким образом, имеется достаточно большое число вариантов поведения системы с приоритетом, с которыми можно ознакомиться в вышеупомянутых книгах. Общим в анализе всех систем с приоритетами является использование понятия периода занятости системы запросами приоритета к и выше. При этом основным методом исследования этих систем является метод введения дополнительного события, кратко описанный в разделе 6.

Проиллюстрируем особенности нахождения характеристик систем с приоритетами на примере системы, описанной в начале раздела. Будем считать, что это система с относительным приоритетом и найдем стационарное распределения времени ожидания запроса приоритета если бы он поступил в систему в момент времени t (так называемого виртуального времени ожидания), для системы с относительными приоритетами.

Обозначим

Условием существования этих пределов является выполнение неравенства

(1.115)

где величина вычисляется по формуле:

Обозначим также .

Утверждение 21. Преобразование Лапласа - Стилтьеса стационарного распределения виртуального времени ожидания запроса приоритета к определяется следующим образом:

где функции задаются формулой:

(1.117)

а функции находятся как решения функциональных уравнений:

Доказательство. Заметим, что функция представляет собой преобразование Лапласа - Стилтьеса распределения длины периода занятости системы запросами приоритета I и выше (то есть, интервала времени с момента поступления в пустую систему запроса приоритета I и выше и до первого после этого момента, когда система окажется свободной от присутствия запросов приоритета I и выше). Доказательство того, что функция удовлетворяет уравнению (1.118), почти дословно повторяет доказательство Утверждения 13. Отметим лишь, что величина есть вероятность того, что период занятости системы запросами приоритета I и выше начинается с прихода запроса приоритета а величина трактуется как вероятность ненаступления катастрофы и запросов приоритета I и выше, за периоды занятости, порожденные которыми наступает катастрофа, за время обслуживания запроса приоритета , начавшего данный период занятости.

Сначала вместо процесса рассмотрим существенно более простой вспомогательный процесс - время, в течение которого ожидал бы начала обслуживания запрос приоритета к, если бы он поступил в систему в момент времени t и после этого в систему не поступало запросов более высокого приоритета.

Пусть - преобразование Лапласа - Стилтьеса распределения случайной величины . Покажем, что функция определяется следующим образом:

(1.119)

где

- вероятность того, что система пуста в момент времени - вероятность того, что в интервале началось обслуживание запроса приоритета

Для доказательства (1.119) применим метод введения дополнительного события. Пусть независимо от работы системы поступает простейший поток катастроф интенсивности s. Каждый запрос назовем «плохим», если во время его обслуживания поступает катастрофа, и «хорошим» - в противном случае. Как следует из утверждений 5 и 6, поток плохих запросов приоритета к и выше является простейшим с интенсивностью

Введем событие A(s,t) - за время t в систему не поступали плохие запросы приоритета к и выше. В силу утверждения 1 вероятность этого события подсчитывается как:

Подсчитаем эту вероятность иначе. Событие A(s,t) является объединением трех несовместных событий

Событие состоит в том, что катастрофы не поступили ни за время t, ни за время При этом, естественно, за время t в систему поступали только хорошие запросы приоритета к и выше. Вероятность события очевидно, равна

Событие состоит в том, что катастрофа поступила в интервале , но в момент поступления система была пуста, а за время не поступило плохих запросов приоритета к и выше.

Вероятность события вычисляется как:

Событие состоит в том, что катастрофа поступила в интервале но в момент ее поступления в системе обслуживался запрос приоритета ниже k, который начал обслуживаться в интервале а за время t — и не поступило плохих запросов приоритета k и выше. Вероятность события определяется следующим образом:

Поскольку событие есть сумма трех несовместных событий, то его вероятность есть сумма вероятностей этих событий. Поэтому

Приравнивая два полученных выражения для вероятности и умножая обе части равенства на после несложных преобразований получаем (1.119)

Очевидно, что для того, чтобы за время ожидания запроса, поступившего в момент t не поступило катастрофы, необходимо и достаточно, чтобы за время не поступило катастроф и запросов приоритета и выше, таких, что за периоды занятости (запросами приоритета и выше), порожденные ими, наступает катастрофа. Из этих рассуждениий и вероятностной трактовки преобразования Лапласа - Стилтьеса получаем формулу, дающую связь преобразований в очевидной форме:

(1.120)

Переходим в (1.120) с учетом (1.119) к пределу при

Можно показать, что вероятность удовлетворяет соотношению

откуда в силу свойства 4 преобразования Лапласа - Стилтьеса следует, что

Кроме того, устремляя в (1.119) с учетом ограниченности функции для всех действительных можно получить рекуррентную процедуру для вычисления интегралов

Из этой процедуры можно получить рекуррентные формулы и для величин

С учетом полученных выражений для величин , в результате предельного перехода в (1.120) получаем доказываемое соотношение (1.116). Утверждение 21 доказано.

Обозначим математическое ожидание виртуального времени ожидания в системе запроса приоритета k.

Следствие. Величины высчитываются следующим образом:

Доказательство следует из (1.116) с использованием свойства 5 преобразования Лапласа - Стилтьеса.

Отметим, что из систем с абсолютным приоритетом наиболее легко исследуется система с двумя потоками запросов и дообслуживанием прерванных запросов. В этой системе характеристики процесса обслуживания приоритетного потока совершенно не зависят от наличия второго потока и вычисляются по обычным формулам для системы M\G\1 при интенсивности входящего потока, равной и распределении времени обслуживания запроса. В свою очередь, характеристики процесса обслуживания неприоритетного потока вычисляются по формулам для ненадежной системы M\G\1 при интенсивности входящего потока, равной и распределении времени обслуживания запроса. Приход приоритетного запроса здесь трактуется как поломка прибора, а время ремонта прибора распределено как период занятости системы, обслуживающей приоритетные запросы.

<< Предыдущий параграф Следующий параграф >>
Оглавление