ЕГЭ и ОГЭ
Главная > Разное > Теоретические основы проектирования компьютерных сетей
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

1.8 Приоритетные системы массового обслуживания

Во всех рассмотренных выше СМО предполагалось, что все запросы, поступающие в систему - однородные, то есть, они имеют один и тот же закон распределения времени обслуживания и обслуживаются в системе согласно общей дисциплины выбора из очереди. Однако, во многих реальных системах запросы, поступающие в систему, неоднородны как по распределению времени обслуживания, так и по их ценности для системы и, следовательно, праву претендовать на первоочередное обслуживание в момент освобождения прибора. Такие модели исследуются в рамках теории приоритетных СМО. Эта теория довольно хорошо развита и ее изложению посвящено немало монографий (см., например, [68], [69], [13], и т.д.). Здесь мы ограничимся кратким описанием приоритетных систем и рассмотрим одну систему.

Рассмотрим однолинейную СМО с ожиданием. На вход системы поступают независимых простейших потоков, поток имеет интенсивность . Будем обозначать

Времена обслуживания запросов из потока характеризуются функцией распределения с преобразованием Лапласа - Стилтьеса и конечными начальными моментами

Запросы из потока назовем запросами приоритета к.

Считаем, что запросы из потока более приоритетны, чем запросы из потока, если Приоритетность проявляется в том, что в момент окончания обслуживания следующим на обслуживание выбирается из очереди запрос, имеющий максимальный приоритет. Запросы, имеющие один и тот же приоритет, выбираются согласно установленной дисциплине обслуживания, например, согласно дисциплине FIFO.

Рассматриваются различные варианты поведения системы в ситуации, когда во время обслуживания запроса некоторого приоритета в систему поступает запрос более высокого приоритета.

Система называется СМО с относительным приоритетом, если поступление такого запроса не прерывает обслуживание запроса. Если же такое прерывание происходит, то система называется СМО с абсолютным приоритетом. В этом случае, однако, требуется уточнить дальнейшее поведение запроса, обслуживание которого оказалось прерванным. Различают следующие варианты: прерванный запрос уходит из системы и теряется; прерванный запрос возвращается в очередь и продолжает обслуживание с места прерывания после ухода из системы всех запросов, имеющих более высокий приоритет; прерванный запрос возвращается в очередь и начинает обслуживание заново после ухода из системы всех запросов, имеющих более высокий приоритет. Прерванный запрос обслуживается прибором после ухода из системы всех запросов, имеющих более высокий приоритет, в течение времени, имеющего прежнее или некоторое другое распределение. Возможен вариант, когда требуемое время обслуживания в последующих попытках идентично времени, которое требовалось для полного обслуживания данного запроса в первой попытке.

Таким образом, имеется достаточно большое число вариантов поведения системы с приоритетом, с которыми можно ознакомиться в вышеупомянутых книгах. Общим в анализе всех систем с приоритетами является использование понятия периода занятости системы запросами приоритета к и выше. При этом основным методом исследования этих систем является метод введения дополнительного события, кратко описанный в разделе 6.

Проиллюстрируем особенности нахождения характеристик систем с приоритетами на примере системы, описанной в начале раздела. Будем считать, что это система с относительным приоритетом и найдем стационарное распределения времени ожидания запроса приоритета если бы он поступил в систему в момент времени t (так называемого виртуального времени ожидания), для системы с относительными приоритетами.

Обозначим

Условием существования этих пределов является выполнение неравенства

(1.115)

где величина вычисляется по формуле:

Обозначим также .

Утверждение 21. Преобразование Лапласа - Стилтьеса стационарного распределения виртуального времени ожидания запроса приоритета к определяется следующим образом:

где функции задаются формулой:

(1.117)

а функции находятся как решения функциональных уравнений:

Доказательство. Заметим, что функция представляет собой преобразование Лапласа - Стилтьеса распределения длины периода занятости системы запросами приоритета I и выше (то есть, интервала времени с момента поступления в пустую систему запроса приоритета I и выше и до первого после этого момента, когда система окажется свободной от присутствия запросов приоритета I и выше). Доказательство того, что функция удовлетворяет уравнению (1.118), почти дословно повторяет доказательство Утверждения 13. Отметим лишь, что величина есть вероятность того, что период занятости системы запросами приоритета I и выше начинается с прихода запроса приоритета а величина трактуется как вероятность ненаступления катастрофы и запросов приоритета I и выше, за периоды занятости, порожденные которыми наступает катастрофа, за время обслуживания запроса приоритета , начавшего данный период занятости.

Сначала вместо процесса рассмотрим существенно более простой вспомогательный процесс - время, в течение которого ожидал бы начала обслуживания запрос приоритета к, если бы он поступил в систему в момент времени t и после этого в систему не поступало запросов более высокого приоритета.

Пусть - преобразование Лапласа - Стилтьеса распределения случайной величины . Покажем, что функция определяется следующим образом:

(1.119)

где

- вероятность того, что система пуста в момент времени - вероятность того, что в интервале началось обслуживание запроса приоритета

Для доказательства (1.119) применим метод введения дополнительного события. Пусть независимо от работы системы поступает простейший поток катастроф интенсивности s. Каждый запрос назовем «плохим», если во время его обслуживания поступает катастрофа, и «хорошим» - в противном случае. Как следует из утверждений 5 и 6, поток плохих запросов приоритета к и выше является простейшим с интенсивностью

Введем событие A(s,t) - за время t в систему не поступали плохие запросы приоритета к и выше. В силу утверждения 1 вероятность этого события подсчитывается как:

Подсчитаем эту вероятность иначе. Событие A(s,t) является объединением трех несовместных событий

Событие состоит в том, что катастрофы не поступили ни за время t, ни за время При этом, естественно, за время t в систему поступали только хорошие запросы приоритета к и выше. Вероятность события очевидно, равна

Событие состоит в том, что катастрофа поступила в интервале , но в момент поступления система была пуста, а за время не поступило плохих запросов приоритета к и выше.

Вероятность события вычисляется как:

Событие состоит в том, что катастрофа поступила в интервале но в момент ее поступления в системе обслуживался запрос приоритета ниже k, который начал обслуживаться в интервале а за время t — и не поступило плохих запросов приоритета k и выше. Вероятность события определяется следующим образом:

Поскольку событие есть сумма трех несовместных событий, то его вероятность есть сумма вероятностей этих событий. Поэтому

Приравнивая два полученных выражения для вероятности и умножая обе части равенства на после несложных преобразований получаем (1.119)

Очевидно, что для того, чтобы за время ожидания запроса, поступившего в момент t не поступило катастрофы, необходимо и достаточно, чтобы за время не поступило катастроф и запросов приоритета и выше, таких, что за периоды занятости (запросами приоритета и выше), порожденные ими, наступает катастрофа. Из этих рассуждениий и вероятностной трактовки преобразования Лапласа - Стилтьеса получаем формулу, дающую связь преобразований в очевидной форме:

(1.120)

Переходим в (1.120) с учетом (1.119) к пределу при

Можно показать, что вероятность удовлетворяет соотношению

откуда в силу свойства 4 преобразования Лапласа - Стилтьеса следует, что

Кроме того, устремляя в (1.119) с учетом ограниченности функции для всех действительных можно получить рекуррентную процедуру для вычисления интегралов

Из этой процедуры можно получить рекуррентные формулы и для величин

С учетом полученных выражений для величин , в результате предельного перехода в (1.120) получаем доказываемое соотношение (1.116). Утверждение 21 доказано.

Обозначим математическое ожидание виртуального времени ожидания в системе запроса приоритета k.

Следствие. Величины высчитываются следующим образом:

Доказательство следует из (1.116) с использованием свойства 5 преобразования Лапласа - Стилтьеса.

Отметим, что из систем с абсолютным приоритетом наиболее легко исследуется система с двумя потоками запросов и дообслуживанием прерванных запросов. В этой системе характеристики процесса обслуживания приоритетного потока совершенно не зависят от наличия второго потока и вычисляются по обычным формулам для системы M\G\1 при интенсивности входящего потока, равной и распределении времени обслуживания запроса. В свою очередь, характеристики процесса обслуживания неприоритетного потока вычисляются по формулам для ненадежной системы M\G\1 при интенсивности входящего потока, равной и распределении времени обслуживания запроса. Приход приоритетного запроса здесь трактуется как поломка прибора, а время ремонта прибора распределено как период занятости системы, обслуживающей приоритетные запросы.

<< Предыдущий параграф Следующий параграф >>
Оглавление