1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
Макеты страниц
5. Постановка начальных и краевых условий.Как уже отмечалось во введении, дифференциальные уравнения с частными производными второго порядка имеют бесчисленное множество решений, зависящих от двух произвольных функций. Чтобы определить эти произвольные функции, или, иначе говоря, выделить необходимое нам частное решение, нужно на искомую функцию При рассмотрении задачи о колебаниях струны дополнительные условия могут быть двух видов: начальные и краевые (или граничные). Начальные условия показывают, в каком состоянии находилась струна в момент начала колебания. Удобнее всего Считать, что струна начала колебаться в момент времени а начальная скорость где Запись и Условия (1.13) и (1.14) аналогичны начальным условиям в простейшей задаче динамики материальной точки. Там для определения закона движения точки, помимо дифференциального уравнения, нужно знать начальное положение точки и ее начальную скорость. Иной характер имеют краевые условия. Они показывают, что происходит на концах струны во все время колебаний. В простейшем случае, когда концы струны закреплены (начало струны — в начале координат, а конец — в точке С такими же точно условиями читатель встречался в курсе сопротивления материалов при изучении изгиба балки, лежащей на двух опорах, под действием статической нагрузки. Физический смысл того факта, что задание начальных и краевых условий полностью определяет процесс, проще всего проследить для случая свободных колебаний струны. Пусть, например, струну, закрепленную на концах, как-то оттянули, т. е. задали функцию Сформулируем теперь окончательно математическую задачу, к которой приводит изучение свободных колебаний струны, закрепленной на обоих концах. Требуется решить однородное линейное дифференциальное уравнение с частными производными второго порядка с постоянными коэффициентами при начальных условиях и краевых условиях Функции Можно доказать, не опираясь на физические представления, что при некоторых ограничениях, наложенных на функции f(x) и F(x), эта задача имеет единственное решение. Примечание. Решение поставленной математической задачи будет отражать реальный характер процесса колебании лишь в том случае, когда начальное смещение и начальные скорости точек струны настолько малы, что соблюдаются все высказанные ранее предположения. Имея в виду в дальнейшем главным образом математическую сторону вопроса, мы при решении конкретных примеров обращать на это внимания не будем.
|
Оглавление
|