ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Уравнения математической физики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 7. Электрические колебания в длинных однородных линиях

19. Телеграфное уравнение.

Знакомясь с теорией обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами, читатель, наверное, сталкивался с применениями этой теории к расчету электрических цепей переменного тока, содержащих сосредоточенные параметры.

Важнейшим примером такой цепи является колебательный контур, состоящий из последовательно соединенных сопротивления, емкости и индуктивности. При этом считается, что все сопротивление контура сосредоточено только в реостате, т. е. что ни индуктивная катушка, ни соединяющие провода при прохождении электрического тока не выделяют тепла. Точно гак же переменный магнитный поток индуцирует электродвижущую силу только в индуктивной катушке, а токи электрического смещения возникают только между обкладками конденсатора. В курсах электротехники подробно изучается возможность таких предположений; в частности, при периодических процессах они считаются допустимыми, если линейные размеры всех элементов цепи малы по сравнению с длиной электромагнитной волны в окружающем цепь диэлектрике.

Если протяженность цепи сравнима с длиной электромагнитной волны (например, телеграфные линии или линии передачи энергии при практически используемых частотах), то такую цепь уже нельзя характеризовать сосредоточенными параметрами. В этом случае можно говорить о линиях с распределенными параметрами

При изучений таких линий учитывают активное сопротивление проводов, индуктивность линии, угечку тока вследствие несовершенства изоляции проводов, а также взаимную емкость между проводами (или между проводом и землей). Мы будем считать линию однородной; это значит, что ее параметры — сопротивление, индуктивность, проводимость изоляции и емкость — распределены вдоль провода равномерно.

Рассмотрим двухпроводную линию (рис. 28); напряжение между проводами и ток в некоторой точке линии зависят от расстояния этой точки до начала линии и времени t.

Обозначим эти функции соответственно через ; они-то и являются искомыми. (В случае однопроводной линии функция и ) есть потенциал точек линии относительно земли.)

Пусть R — активное сопротивление, L — индуктивность, С—емкость и G-активная проводимость между проводами, рассчитанные на единицу длины провода. Напомним, что индуктивность L есть коэффициент пропорциональности, связывающий индуктивное падение напряжения со скоростью изменения тока, емкость коэффициент пропорциональности между током смешения и скоростыо изменения напряжения, активная проводимость G есть коэффициент пропорциональности между током утечки и напряжением.

Рис. 28.

Для составления дифференциальных уравнений, которым должны удовлетворять функции и выделим участок линии от точки с абсциссой до точки с абсциссой . Если обозначить для краткости через и и I напряжение и ток в точке в момент времени t, то в точке в тот же момент времени значения этих величин (с точностью до бесконечно малых величин высших порядков, чем ) будут равны

Разность напряжений в начале и в конце рассматриваемого участка линии равна сумме падения напряжения на активном сопротивлении, равном , и индуктивного падения напряжения, равного (множитель возникает потому, что характеристики линии рассчитаны на единицу ее длины). Поэтому

т. е.

Далее, изменение тока на этом же участке обусловлено током утечки и током смещения. Следовательно,

откуда

Полученные уравнения (7.1) и (7.2) представляют систему двух уравнений с частными производными пеивого порядка. Из них легко исключить любую из неизвестных функций, например ток. Дифференцируем для этого уравнение (7.1) по х, а уравнение (7.2) по t:

Из второго равенства находим . Выражая еще из уравнения (7.2): и подставляя все в первое из равенств (7.3), получим

или окончательно

Полученное уравнение называется телеграфным уравнением. Рекомендуем читателю проверить самостоятельно, что, исключая функцию гг, мы придем к точно такому же уравнению и для функции V.

Полное исследование уравнения (7.4) (или (7.5)) требует применения специальных методов выходит за рамки книги. Мы ограничимся рассмотрением частных случаев, впрочем играющих значительную роль в электротехнике. При этом сначала отвлечемся от краевых условий, т. е. будем считать линию бесконечно простирающейся в обе стороны.

Предполагается, что в начальный момент, т. е. при , вдоль линии задано распределение напряжения и тока

Пользуясь уравнениями (7.2) и (7.1), легко найти и

Поскольку — , то

Ачало! пчно

<< Предыдущий параграф Следующий параграф >>
Оглавление