1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
Макеты страниц
§ 8. Уравнение колебаний мембраны23. Вывод уравнения колебаний мембраны.В предыдущих параграфах рассматривались задачи, приводящие к одномерному волновому уравнению Сейчас мы перейдем к изучению двумерного волнового уравнения, т. е. уравнения вида Покажем, что к этому уравнению сводится задача о свободных колебаниях однородной мембраны. Говоря о мембране, мы подразумеваем упругую свободно изгибающуюся натянутую пленку. Пусть в состоянии покоя мембрана занимает некоторую область D в плоскости Отклонения точек мембраны от плоскости Мы будем изучать малые колебания мембраны, т. е. считать угол Из формулы для можно также принять, что и Условия (8.2) совершенно аналогичны условию (1.6), введенному при изучении малых колебаний струны. Приняв условия (8.2), получим: Следовательно, вектор N является единичным векторомс Вычислим еще площадь поверхности мембраны в произвольный момент времени t. Она выражается интегралом (см. {1], п. 148) В силу условий (8.2) заключаем, что изменением площади поверхности мембраны в процессе колебания можно пренебречь. Это, разумеется, относится как ко всей мембране, так и к любой ее части. Рис. 30 Перейдем теперь от геометрических предположений к механическим. Если вырезать какой-нибудь участок мембраны, то действие отброшенной ее части следует заменить силами, распределенными вдоль контура L выделенного участка. Поскольку мембрана свободно изгибается, то эти силы будут действовать в касательных плоскостях к мембране по направлению нормалей к контуру L (рис. 30). Будем считать, что мембрана находится под действием равномерного натяжения. Это значит, что величина силы, приложенной к любому элементу Рис. 31. Прежде всего найдем равнодействующую сил натяжения, приложенных к контуру L. Выберем направление обхода этого контура, как на рис. 31 и обозначим через Если Поскольку точки контура лежат на поверхности мембраны, то аппликата и определяется из уравнения Вектор Так как Чтобы найти проекцию равнодействующей всех сил натяжения, надо полученное выражение проинтегрировать по контуру L, т. е. вычислить интеграл Подынтегральное выражение зависит только от х и у, поэтому криволинейный интеграл но конгуру L можно заменить интегралом по контуру L' (L' — проекция Преобразуя последний интеграл по формуле Грина (см. [1], п. 140), получим (направление обхода контура L положительно, как это и требуется в формуле Грина). Воспользовавшись условиями малости частных производных их Но а Чтобы вывести дифференциальное уравнение колебаний мембраны, выделим бесконечно малый участок Сокращая на Поскольку выражение в скобках есть двумерный оператор Лапласа Отметим, что имеется много задач, приводящих к трехмерному волновому уравнению где К этому уравнению сводятся задачи колебания газа, находящеюся в некотором объеме, задачи теории распространения звуковых волн (акустические волны)
|
Оглавление
|