1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
Макеты страниц
3.6. Эргодические случайные процессыПри решении прикладных задач, когда по наблюдаемым значениям изучаемого случайного процесса требуется оценить его моменты, большое значение приобретает информативность выборочных реализаций. Это особенно важно в тех случаях, когда условия, в которых проводят наблюдения, позволяют получить лишь одну реализацию. В связи с зтим возникает естественный вопрос — можно ли по одной реализации случайного процесса делать какие-либо заключения о его свойствах? Оказывается, что можно, но не для всех случайных процессов, а лишь для тех, которые удовлетворяют определенным условиям. Определение 3.9. Скалярный случайный процесс или, что тоже самое, Теорема 3.9. Пусть существует тогда и только тогда, когда существует предел Из условий теоремы следует существование случайной величины с математическим ожиданием и дисперсией Если воспользоваться определением дисперсии скалярной случайной величины, то с учетом (3.11), (3.12) получаем Сопоставив этот результат с (3.13), приходим к равенству Из определения предела следует, что I тогда и только тогда, когда 1 Значит, теорема доказана. Следствие 3.7. Если в условиях теоремы тогда и только тогда, когда Следствие 3.8. Если скалярный случайный процесс второго порядка является необходимым и достаточным для эргодичности этого случайного процесса по отношению к математическому ожиданию. Следствие 3.8 — отражение общей эргодической теоремы, утверждающей следующее. Для скалярного случайного процесса Практическая проверка реализуемости необходимого и достаточного условия (3.14) эргодичности случайного процесса относительно его математического ожидания может быть связана с преодолением значительных трудностей. Поэтому зачастую, особенно в случае стационарных случайных процессов, целесообразно использовать достаточные условия эргодичности. Теорема 3.10. Пусть скалярный случайный процесс второго порядка Рис. 3.1 Пусть выполнены условия теоремы. Тогда для любого а так как имеют место неравенства (см. рис. 3.1) Таким образом, из (3.15) следует (3.14), что и требовалось доказать. Пример 3.12. Скалярный стационарный случайный процесс (см. пример 3.11) является эргодическим относительно математического ожидания. Действительно: а) по условию б) он является интегрируемым на любом отрезке в) выполняется достаточное условие (3.15), которое при Замечание 3.3. Для эргодического по отношению к математическому ожиданию скалярного случайного процесса При этом, как известно Замечание 3.4. Возможность получения оценки математического ожидания эргодического случайного процесса по одной его реализации, т.е. по результатам одного эксперимента, зачастую избавляет исследователей от проведения многочисленных экспериментов, связанных с затратами материальных и временных ресурсов. Замечание 3.5. Если Скалярный случайный процесс Определение 3.10. Скалярный стационарный случайный процесс второго порядка или, что тоже самое, В заключение отметим, что если скалярный случайный процесс необходимо и достаточно, а условие достаточно для эргодичности исходного скалярного стационарного случайного процесса
|
Оглавление
|