1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
Макеты страниц
6.6. Стационарный режим функционирования системы обслуживания (основные понятия и соотношения)В теории массового обслуживания и ее приложениях основное внимание уделяется анализу стационарных режимов функционирования систем обслуживания. Математическая модель стационарного режима функционирования любой системы обслуживания, в предположении его существования, формально является предельным Базируясь на результатах анализа стационарных режимов процессов гибели — размножения (см. 5.4), проведем анализ стационарного режима функционирования системы обслуживания с ожиданием как наиболее общей. Согласно (6.16), (6.17), для стационарного режима функционирования имеем В стационарном режиме функционирования изучаемая система также меняет свое состояние случайным образом, но вероятности состояний уже не зависят от текущего времени. Каждая из них, являясь постоянной величиной, характеризует относительное время пребывания системы в данном состоянии. Из первого уравнения системы (6.19) находим где величина определяет среднее число требований, поступающих в систему обслуживания за среднее время обслуживания одной заявки, так как интенсивность Эту величину называют приведенной плотностью потока заявок. Последовательно разрешив каждое из уравнений системы (6.19) относительно Точно так же где величину равную отношению среднего времени обслуживания одной заявки Среднюю длину очереди А так как некоторые требования, не дождавшись обслуживания, уходят из очереди с интенсивностью и, то без обслуживания систему покидает в среднем и среднее число занятых каналов обслуживания, которое с учетом (6.20) и (6.23) можно записать в виде Величина q определяемая равенством (6.26), характеризует вероятность того, что заявка, поступившая в систему обслуживания, будет обслужена. При отсутствии очереди Величина то, определяемая равенством (6.27), есть математическое ожидание числа занятых каналов обслуживания. Воспользовавшись тождеством (6.16) при или где Значение Поэтому, учитывая (6.26), (6.27), находим Отметим, что, согласно (6.29), относительная пропускная способность q системы обслуживания равна отношению среднего числа занятых каналов к приведенной плотности потока заявок.
|
Оглавление
|