ЕГЭ и ОГЭ
Живые анекдоты
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

3.1.2. Понятие математической модели.

Математическая модель — это абстракция реального мира, в которой интересующие исследователя отношения между реальными элементами заменены подходящими отношениями между математическими объектами. Математические модели, в описании которых используются случайные величины, называют вероятностными или стохастическими. Всякая модель является упрощенным представлением действительности, и искусство моделирования состоит в знании того, что, где, когда и как можно и нужно упростить. Это знание естественно приходит с опытом.

Следующий пример поможет читателю «прочувствовать» ряд узловых моментов и некоторые общие «тонкие места», с которыми приходится сталкиваться исследователю в процессе реалистического моделирования.

Рассмотрим эксперимент, в котором каждый из испытуемых прочитывает текст, набранный шрифтом А, и эквивалентный ему по трудности текст, набранный шрифтом Б. В обоих случаях фиксируется время затрачиваемое испытуемым на чтение. Пусть — время, потребовавшееся испытуемому на чтение контрольных текстов, набранных соответственно шрифтами А и Б. Один из возможных простых вариантов математической модели данной ситуации может быть описан следующим образом:

где случайная величина, отражающая скорость чтения испытуемого и не зависящая от шрифта, — постоянные, зависящие только от шрифта, a — взаимно независимые случайные ошибки со средними значениями, равными нулю, и с одинаковыми дисперсиями . В правую часть уравнений (3.1) входит больше величин, чем в левую. Это означает, что оценить основные числовые характеристики величин , и по наблюдениям нельзя. Более того, даже при отсутствии в модели ошибок и , т. е. в ситуации, когда в левой части величин, а в правой — только найти без дополнительных соглашений величины и основные числовые характеристики случайных величин также нельзя. (В подобных случаях иногда принято говорить, что модель неизмерима относительно имеющихся опытных данных.) Однако, если в задачу исследования входит только сравнение средней скорости чтения двух анализируемых шрифтов, то неизмеримость модели нам не мешает. В самом деле, случайная величина

имеет положительное среднее значение, если шрифт Б более удобен для чтения, чем шрифт А, и отрицательное среднее значение — в противном случае.

Оценка же разности по значениям уже не представляет труда. Аналогично, если бы нам требовалось охарактеризовать меру случайного разброса в скорости чтения каждого из испытуемых (т. е. оценить дисперсию , ее определение и вычисление см. в гл. 5 и 8), мы могли бы найти дисперсию случайных величин

и вычесть из нее величину определяющую вклад случайных ошибок в модели (3.3). В данном случае дисперсию мы оцениваем, не определяя для каждого испытуемого, а воспользовавшись тем, что — постоянные.

Таким образом, с помощью различных вариантов моде» ли (3.1) можно учесть: различие между испытуемыми, в скорости чтения; различие между средней скоростью чтения шрифтов А и Б; случайный характер времени, затрачиваемого испытуемым на чтение текста. Вместе с тем в ней пренебрегается возможной зависимостью разности от скорости чтения индивидуума () и от того, в какой последовательности прочитываются тексты: сначала А, а затем Б или наоборот. Кроме того, упрощением является и предположение о постоянстве дисперсий случайных погрешностей. Безусловно, для более тщательного изучения длительности чтения потребовалась бы более сложная модель, в которой должны были бы найти отражение указанные выше зависимости. Однако, если речь идет только о сравнении средних скоростей чтения шрифтов, то достаточно рассмотреть модель (3.2) — она свою роль выполняет: подсказывает достаточно эффективный способ анализа данных, отвергая при этом другой возможный (и слишком наивный) подход, при котором сначала усредняются в отдельности данные по каждому шрифту:

а затем производится сравнение средних , полученных якобы по двум независимым сериям наблюдений (это сравнение может быть осуществлено, например, с помощью критерия Стьюдента, см. п. 11.2.8). Последний метод на практике может привести к резкой потере эффективности выявления существующего различия между шрифтами, так как наблюдения оказываются на самом деле существенно зависимыми из-за общего значения

В некотором смысле математическая модель является для исследователя тем же, чем для физика физическая лаборатория. Можно ставить эксперименты в «мире», порожденном моделью, и, если математическая модель является правдивым отражением действительности, результаты этих экспериментов применимы к реальному миру.

Говоря о применимости моделей к описанию реальной действительности, мы подразумеваем возможность их практического использования в качестве базы, отправной точки при выборе наилучшего способа статистической обработки исходных данных, а также при решении таких задач, как планирование, прогнозирование, оптимальное управление системами и процессами, оценка эффективности функционирования (или комплексной характеристики качества) сложной системы, диагностика (медицинская и техническая), нормирование.

<< Предыдущий параграф Следующий параграф >>
Оглавление