ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

8.6.5. Построение интервальных оценок (доверительных областей).

В § 8.5 введено понятие интервальной оценки неизвестного параметра которую называют также доверительным интервалом, а при многомерном параметре, т. е. при доверительной областью. Как же конкретно построить по выборочным данным такую случайную область которая с наперед заданной доверительной вероятностью Р накрывала бы неизвестное нам значение параметра ? Очевидно, эта область должна конструироваться вокруг точечной оценки

0 параметра 0, а ее точный вид и объем определяются характером закона распределения случайной величины , в частности ее функцией распределения которая, к сожалению, тоже зависит от неизвестного истинного значения параметра .

Существует два подхода к преодолению этой трудности. Первый подход, если его удается реализовать, приводит к построению точных (при каждом конечном объеме выборки доверительных областей и основан на подборе таких функций и от к переменных и таких не зависящих от нормирующих констант что распределение статистик типа

или

может быть точно описано (например, с помощью одного из стандартных затабулированных законов, см. п. 6.1.5, 6.2.1, 6.2.6) и не зависит от неизвестного параметра .

В качестве примера рассмотрим задачу интервального оценивания параметров а и нормальной генеральной совокупности (см. пример 8.3 в п. 8.6.1).

Как известно (см. п. 6.2.2), статистика

подчинена закону распределения Стьюдента с степенями свободы (в данном случае функция ) , а нормирующая константа Поэтому, определив из таблиц по заданной вероятности Р процентные точки уровня -распределения с степенями свободы (т. е. -процентную точку ) и -процентную точку причем в силу симметрии распределения см. п. 5.6.5), мы можем утверждать, что неравенство

выполняется с вероятностью . А это означает, что случайный доверительный интервал

накрывает неизвестное среднее значение а с заданной вероятностью Р.

Для построения интервальной оценки параметра пользуемся тем фактом, что статистика подчинена -квадрат распределению с степенями свободы (см.

п. 6.2.1).

Таким образом, в данном случае функция , а нормирующая константа . Поэтому, определив из таблиц процентные точки -распределения с степенями свободы: где, как и прежде, , а Р — заданная доверительная вероятность, имеем неравенство

которое выполняется с вероятностью . А это означает, что случайный доверительный интервал

накрывает неизвестное значение дисперсии с заданной вероятностью .

Второй подход к построению доверительных, областей более прост и универсален, однако он основан на асимптотических свойствах оценок, а поэтому дает приближенные результаты и пригоден лишь при достаточно больших объемах выборок п. Этот подход использует тот факт (см. § 8.4), что как оценки максимального правдоподобия, так и оценки по методу моментов имеют асимптотически-нормальное совместное распределение, т. е. распределение -мерного вектора стремится к многомерному нормальному закону с нулевым вектором средних значений и с ковариационной матрицей , зависящей от неизвестного параметра . При этом приближенном подходе допускаются две «натяжки»: во-первых, асимптотический вид распределений случайной величины используется при конечных объемах выборки и, во-вторых, вместо неизвестного значения параметра в матрицу вставляется его оценочное значение .

Теперь, для того чтобы построить доверительную область для неизвестного параметра мы должны воспользоваться следующим известным фактом (см. [12, с. 77]): если -мерный вектор распределен нормально с параметрами и , то случайная величина

имеет -распределение с k степенями свободы.

Определив из таблиц по заданной величине доверительной вероятности Р процентные точки -распределения с k степенями свободы , где и заменив в известной матрице неизвестное значение параметра его приближенным значением , мы можем утверждать, что неравенство

(8.42)

выполняется с вероятностью, приблизительно равной Р.

Замечание 1. В случае единственного оцениваемого параметра (т. е. при ) можно воспользоваться

1 непосредственно (, - -нормальностью разности и записать вместо (8.42)

где -процентная точка стандартного нормального распределения, а дисперсия оценки . Из (8.42) следует запись соответствующего доверительного интервала:

Замечание 2. Если в качестве используются точечные оценки максимального правдоподобия, то ковариационная матрица вектора однозначно определяется информационной матрицей Фишера (см. § 8.3 и 8.4):

где элементы матрицы определяются соотношениями (8.7).

Замечание 3. Положительная определенность и симметричность матрицы обусловливают эллипсоидальный характер доверительного множества, задаваемого соотношением (8.42).

Пример 8.8. Рассмотрим задачу интервальной оценки по наблюдениям параметра биномиального закона (см. п. 6.1.1), т.е. закона распределения дискретной случайной величины , определяемого вероятностями

где N — известное целое положительное число, а — параметр, подлежащий оценке

Сначала в соответствии с техникой, описанной в п. 8.6.1, подсчитаем точечную оценку максимального правдоподобия параметра .

Логарифмическая функция правдоподобия в данном случае

Соответствующее уравнение максимального правдоподобия

Решая его относительно , получаем оценку максимального правдоподобия:

Пользуясь независимостью и тем фактом, что (см. п. 6.1.1), имеем:

Задавшись доверительной вероятностью используя факт асимптотической нормальности разности и подставляя в выражение для дисперсии вместо его приближенное значение , получим в соответствии с (8.42") интервальную оценку для (с уровнем доверия

<< Предыдущий параграф Следующий параграф >>
Оглавление