5.5.3. Многомерные функции распределения и плотности. Статистическая независимость случайных величин.
Из вышеизложенного ясно, что вопрос об удобных способах задания закона распределения случайной величины особенно актуален в непрерывном случае: для описания «поведения» дискретной случайной величины
универсальной и одновременно конструктивной формой (при «не слишком большом» числе возможных значений исследуемой случайной величины) является полигон частот, т. е. форма, при которой каждому возможному значению
ставится в соответствие вероятность его осуществления 

Рис. 5.6. Гистограмма
и соответствующим образом подобранная нормальная функция плотности
характеризующие распределение числа телефонных разговоров в год, приходящихся на одного абонента
Поэтому сосредоточим теперь свое внимание на непрерывном случае. Специфика многомерных схем в этом случае заключается в том у что в отличие от одномерного случая многомерная функция распределения

перестает быть практически полезной формой задания изучаемого закона распределения.
Многомерными аналогами конечных и полубесконечных отрезков (которые можно получить суммированием и пересечением полубесконечных отрезков вида
) являются конечные и полубесконечные гиперпараллелепипеды. Именно для многомерных областей такого типа и определяет функция распределения (5.9) правило вычисления вероятностей. Однако, если в одномерном случае этого было достаточно для «работы» в соответствующем вероятностном пространстве, то в многомерном случае нас это уже не удовлетворяет.