ЕГЭ и ОГЭ
Живые анекдоты
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

Глава 6. МОДЕЛИ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ, НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ В ПРАКТИКЕ СТАТИСТИЧЕСКИХ ИССЛЕДОВАНИИ

Говоря о распространенности той или иной модели распределения в практике статистических исследований, следует иметь в виду две возможные роли, которые эта модель может играть. Первая из них заключается в адекватном описании механизма исследуемого реального процесса, индуцирующего подлежащую статистическому анализу генеральную совокупность. В этом случае выбранная по тем или иным соображениям (или выведенная теоретически) модель описывает закон распределения вероятностей непосредственно анализируемой и имеющей четкую физическую интерпретацию случайной величины (заработной платы работника, дохода семьи, числа сбоев автоматической линии в единицу времени, числа дефектных изделий, обнаруженных в проконтролированной партии заданного объема, и т. д.). Подходы к построению таких моделей, методы их анализа и обоснования относятся к области «реалистического» (или содержательного) моделирования (см. гл. 3).

Другая роль широко распространенных в статистических исследованиях моделей — использование их как вспомогательное техническое средство при реализации методов статистической обработки данных. С помощью моделей этого типа описываются распределения вероятностей некоторых вспомогательных функций от исследуемых случайных величин, используемых для построения разного рода статистических оценок и статистических критериев (о способах построения оценок и критериев см. § 8.1-8.6, 9.1-9.6). К распределениям этого типа относятся в первую очередь распределения «хи-квадрат», Стьюдента (-распределение) и -распределение.

Зтой условной классификации распределений мы и будем придерживаться при изложении содержания данной главы.

6.1. Законы распределения, используемые для описания механизмов реальных процессов или систем

6.1.1. Распределения, возникающие при анализе последовательности испытаний Бернулли: биномиальное и отрицательное биномиальное.

Широкий класс случайных величин, которые приходится изучать в практике статистических исследований, индуцируется последовательностью независимых случайных экспериментов следующего типа:

в результате реализации каждого случайного эксперимента (наблюдения) некоторое интересующее нас событие А может произойти (с некоторой вероятностью ) или не произойти (соответственно с вероятностью при многократном (-кратном) повторении этого эксперимента вероятность осуществления события А остается одной и той же, а наблюдения, составляющие эту последовательность экспериментов, являются взаимно независимыми. Серию экспериментов подобного типа принято называть последовательностью испытаний Бернулли. Можно описать эту последовательность в терминах случайных величин, сопоставляя с по счету экспериментом данной последовательности случайную величину

Тогда «бернуллиевость» последовательности означает, что причем случайные величины статистически независимы (определение статистической независимости случайных величин см. в п. 5.5.3).

При определенных (как правило, приблизительно соблюдающихся на практике) условиях в схему испытаний Бернулли хорошо укладываются такие случайные эксперименты, как бросание монеты или игральной кости, проверка (по альтернативному признаку) изделий массовой продукции, обращение к «обслуживающему устройству» (с исходами «свободен — занят»), попытка выполнения некоторого задания исходами «выполнено — не выполнено»), стрельба по цели (с исходами «попадание — промах») и т. п.

«Единичное» испытание Бернулли можно интерпретировать и как извлечение объекта из бесконечной генеральной совокупности, в которой доля объектов обладает некоторым интересующим нас свойством. Тогда интересующее нас событие А заключается в том, что при этом извлечении мы «вытащим» один из объектов, обладающих упомянутым свойством.

Биномиальный закон описывает распределение случайной величины , т. е. числа появления интересующего нас события в последовательности из независимых испытаний, когда вероятность появления этого события в одном испытании равна .

Из определения биномиальной случайной величины следует, что ее возможными значениями являются все целые неотрицательные числа от нуля до . Для вывода вероятностей рассмотрим внимательнее пространство элементарных событий, порожденное последовательностью испытаний Бернулли. Очевидно, каждому элементарному событию соответствует последовательность из нулей и единиц длины

Разобьем эти последовательности на классы, включая в один класс все последовательности типа (6.2), содержащие одинаковое число единиц:

Имея в виду, что число элементарных событий в классе с номером равно (поскольку единиц можно разместить на местах различными способами), а также тот факт, что вероятность осуществления любого элементарного исхода, входящего в класс с номером равна, как нетрудно подсчитать, величине получаем

Это и есть формула (аналитическая запись, модель) биномиального закона распределения. Подсчет его основных числовых характеристик (который в данном случае легче реализовать, не используя прямые формулы типа (5.21), а опираясь на соотношение взаимную независимость h и простоту вычисления их моментов) дает:

Биномиальное распределение широко, используется в теории и практике статистического контроля качества продукции, при описании функционирования систем массового обслуживания, в теории стрельбы и в других областях практической деятельности.

Отрицательный биномиальный закон описывает распределение случайной величины определяемой испытаниями Бернулли (см. (6.1)) следующим образом:

Другими словами, — это число испытаний в схеме Бернулли (с вероятностью появления интересующего нас события в результате проведения одного испытания) до появления интересующего нас события (включая последнее испытание). Нетрудно вывести аналитический вид распределения случайной величины . Зафиксируем любое ее возможное значение . Из того, что при числе испытаний впервые осуществилось заданное число k появлений интересующего нас события, следует, что на предыдущем шаге, т. е. при числе испытаний, равном мы имели появлений того же события.

Следовательно, опираясь на теорему умножения вероятностей, мы можем записать:

Название данного закона объясняется тем, что правые части (6.4) являются последовательными членами разложения бинома с отрицательным показателем:

Основные числовые характеристики закона:

Модель отрицательного биномиального распределения применяется в статистике несчастных случаев и заболеваний, в задачах, связанных с анализом количеств индивидуумов данного вида в выборках из биологических совокупностей, в задачах оптимального резервирования элементов, в теории стрельбы.

<< Предыдущий параграф Следующий параграф >>
Оглавление