ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

8.1.5. Эффективность.

Представим себе, что мы имеем две состоятельные и несмещенные векторные оценки неизвестного векторного параметра . Для возможности геометрической интерпретации примера будем полагать размерность k векторного параметра равной двум Для анализа свойств двух конкурирующих оценок будем производить многократное (в данном примере двадцатикратное) оценивание неизвестного параметра каждым из двух рассматриваемых способов. С этой целью подсчитываем значения являющиеся результатом подстановки в функции по порядку выборки объема т. е. извлекаем первую выборку объема вставляем эти наблюдения в качестве аргументов функций и — получаем первую пару оценок ; затем извлекаем вторую выборку объема вставляем эти наблюдения в качестве аргументов тех же функций и — получаем вторую пару оценок , и т. д. На рис. 8.1 по горизонтальной оси отложены первая компонента неизвестного (оцениваемого) параметра и первые компоненты ее двух оценок на рис. 8.1, а и на рис. 8.1, б), а по вертикальной оси — вторая компонента неизвестного (оцениваемого) параметра и вторые компоненты ее двух оценок на рис. 8.1, а и на рис. 8.1, б).

Таким образом, взаимное расположение точки и крестика на рис. 8.1, а дает наглядное представление о близости оценки полученной первым способом с использованием выборки, к истинному значению оцениваемого параметра (аналогичная картина для второго способа оценивания представлена на рис. 8.1, б). Более тесная концентрация оценок, полученных первым способом, около истинного значения, очевидно, склонит нас к мысли о большей эффективности оценки по сравнению с оценкой .

Рис. 8.1. Два способа состоятельного несмещенного оценивания многомерного параметра характеризующегося разной эффективностью: а) более эффективная оценка; б) менее эффективная оценка

Именно этот критерий как мера разброса оцененных значений около истинного значения в соответствующем -мерном пространстве и положен в основу определения эффективности оценки. Оценка параметра называется эффективной, если она среди всех прочих оценок того же самого параметра обладает наименьшей мерой случайного разброса относительно истинного значения оцениваемого параметра. Эффективность является решающим свойством, определяющим качество оценки, и оно, вообще говоря, не предполагает обязательного соблюдения свойства несмещенности.

Остается уточнить, как именно измеряется степень случайного разброса значений оценки относительно истинной величины параметра .

В случае, когда — скаляр (т. е. размерность оценки ), в качестве такой естественной меры берется средний квадрат отклонения, т. е. величина что для несмещенных оценок совпадает с их дисперсией, так как в этом случае

В случае, когда оценка вектор (т. е. размерность оценки ), в качестве меры отклонения от истинного значения векторного параметра обычно рассматривается ковариационная матрица оценки , т. е. симметричная и неотрицательно-определенная матрица размера которую мы будем обозначать . Соответственно оценка параметра считается более эффективной, чем оценка если существуют их ковариационные матрицы и матрица является неотрицательно-определенной.

Для векторных оценок возможны случаи, когда, несмотря на существование матриц и , нельзя ответить на вопрос, какая из двух оценок эффективнее в вышеуказанном смысле. Эта неопределенность устраняется, если в качестве меры отклонения векторной несмещенной оценки от истинного значения оцениваемого параметра рассматривать не саму ковариационную матрицу оценки , а ее определитель (обобщенная дисперсия, см. п. 5.6.7) или след

<< Предыдущий параграф Следующий параграф >>
Оглавление