ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

5.4. Закон распределения вероятностей случайной величины. Генеральная совокупность и выборка из нее

5.4.1. Закон распределения вероятностей.

Мы уже знаем (см. п. 4.1.3), что для полного описания механизма исследуемого случайного эксперимента, т. е. для полного описания вероятностного пространства (или, что то же, для исчерпывающего задания интересующей нас случайной величины), недостаточно задать лишь пространство элементарных событий (и тем самым описать множество теоретически возможных значений анализируемой случайной величины). К этому необходимо добавить также: в дискретном случае — правило сопоставления с каждым возможным значением случайной величины вероятности его появления в непрерывном случае — правило сопоставления с каждой измеримой областью возможных значений случайной величины вероятности события, заключающегося в том, что в случайном эксперименте реализуется одно из возможных значений, принадлежащих заданной области АХ. Это правило, позволяющее устанавливать соответствия вида:

принято называть законом распределения вероятностей исследуемой случайной величины .

Прозрачное пояснение такой терминологии мы получаем в рамках дискретного вероятностного пространства, поскольку в этом случае речь идет о правиле распределения суммарной единичной вероятности (т. е. вероятности достоверного события) между отдельными возможностями

Очевидно, задание закона распределения вероятностей, т. е. соответствий типа (5.2), может осуществляться с помощью таблиц и графиков (только в дискретном случае), а также с помощью функций и алгоритмически (об основных формах задания законов распределения и примерах их модельной, т. е. аналитической, записи см. гл. 6).

Приведем примеры табличного и графического задания законов распределения вероятностей.

Тщательный статистический анализ засоренности партий дефектными изделиями (пример 4.5) позволил построить следующее распределение вероятностей для случайной величины выражающей число дефектных изделий, обнаруженных при контроле партии, состоящей из N=30 изделий, случайно отобранных из продукции массового производства (табл. 5.2):

Таблица 5.2

Значения вероятностей, приведенные в табл. 5.2, даны с точностью до третьего десятичного знака, поэтому то, что суммирование представленных в таблице вероятностей дает 0,998 (вместо единицы), легко объяснимо: недостающие 0,002 как-то «размазаны» между возможными значениями 11, ..., 30, но на каждое отдельное возможное значение приходится вероятность, меньшая 0,0005.

Тот же закон распределения может быть представлен графически (рис. 5.2).

Геометрическое изображение закона распределения вероятностей дискретной случайной величины часто называют полигоном распределения или полигоном частот.

В качестве другого примера рассмотрим фрагмент табл. 5.1, выбрав из одиннадцати представленных в ней компонент только две: качество жилищных условий и среднедушевой доход Еще более упростим рассматриваемую схему, перейдя от по существу непрерывной случайной величины к ее дискретному аналогу отказываясь от точного знания среднедушевого дохода каждой семьи и ограничиваясь лишь тремя возможными градациями: семья имеет низкий доход (градация ), средний доход (градация ) и высокий доход (градация ). С учетом четырех градаций качества жилищных условий: — качество низкое — качество удовлетворительное; — качество хорошее и — качество очень хорошее, и проведенного вероятностно-статистического анализа получаем следующий закон распределения вероятностей двумерной случайной величины (данные условные):

Таблица 5.3

Соответствующий двумерный полигон распределения представлен на рис. 5.3.

Закон распределения вероятностей многомерной случайной величины называют многомерным или совместным. Если каждая из компонент ( см. (5.1)) анализируемого многомерного признака дискретна и имеет конечное число всех возможных значений, то, очевидно, общее число возможных «значений» случайного вектора будет .

Рис. 5.2. Графическое задание закона распределения вероятностей для числа дефектных изделий, обнаруженных в наугад извлеченной партии, состоящей из 30 изделий массового производства

Рис. 5.3. Полигон двумерного распределения семей по качеству жилищных условий и по уровню дохода

В этом случае вместо общей индексации всех возможных многомерных значений удобнее пользоваться -мерной индексацией вида , где первый индекс i определяет номер возможного значения по первой компоненте, второй индекс j — по второй компоненте и т. д. Тогда будет означать возможное значение , полученное сочетанием возможного значения компоненты возможного значения компоненты возможного значения компоненты а вероятности удобно обозначать . Таким образом, в табл. 5.3 представлены вероятности

При анализе многомерных (совместных) распределений часто бывает необходимо получить закон распределения лишь для какой-то части компонент анализируемого векторного признака. Так, многомерная случайная величина , рассмотренная в табл. 5.1, естественно разбивается на два подвектора: описывающий социальнодемографические и экономическую характеристики семьи, и описывающий структуру семейного потребления.

Частный (маржинальный) закон распределения

подвектора анализируемой многомерной случайной величины описывает распределение вероятностей признака в ситуации, когда на значения другой части компонент не накладывается никаких условий. В дискретном случае соответствующие вероятности определяются по формулам:

где возможные значения векторных признаков соответственно h и .

Формулы (5.3) и (5.3) получаются как непосредственные следствия теоремы сложения вероятностей если принять во внимание следующие очевидные связи между интересующими нас событиями:

В рассматриваемом примере (см. табл. 5.3) частные распределения подсчитаны по формулам (5.3) и (5.3) и задают соответственно распределение семей отдельно по качеству жилищных условий и по уровню дохода (они приведены соответственно в последней строке и в последнем столбце табл. 5.3).

Условный закон распределения

подвектора h анализируемой многомерной случайной величины при условии, что значение другого подвектора зафиксировано на уровне вычисляется по формуле

Аналогично

Формулы (5.4) и (5.4) получаются как простые следствия теоремы умножения вероятностей (4.11).

Так, например, если нас интересует условное распределение группы семей с высоким доходом по качеству жилищных условий, т. е. распределение то вычисления по (5.4) на основе данных табл. 5.3 дают:

что означает, в частности, что из всей совокупности семей с высоким доходом 5 % проживает в плохих жилищных условиях, 10 % — в удовлетворительных, 5 % — в хороших и 50 % — в очень хороших.

<< Предыдущий параграф Следующий параграф >>
Оглавление