ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

7.3.2. Многомерная центральная предельная теорема.

Пусть — независимые и одинаково распределенные -мерные случайные величины с вектором средних значений и ковариационной матрицей Тогда при совместная функция распределения случайного вектора сходится (для любого значения векторного аргумента X) к совместной функции распределения -мерной нормальной случайной величины, имеющей вектор средних и ковариационную матрицу 2.

Замечание 1. Необходима известная осторожность при использовании центральной предельной теоремы в практике статистических исследований.

Во-первых, если предельный вид распределения суммы случайных слагаемых при определенных условиях всегда нормален и не зависит от вида распределения самих слагаемых, то скорость сходимости распределения суммы к нормальному закону существенно зависит от типа распределения исходных компонент. Так, например, при суммировании равномерно распределенных случайных величин уже при 6—10 слагаемых можно добиться достаточной близости к нормальному закону, в то время как для достижения той же близости при суммировании распределенных слагаемых понадобится более 100 слагаемых.

Во-вторых, центральной предельной теоремой вообще не рекомендуется пользоваться для аппроксимации вероятностей на «хвостах» распределения, т. е. при оценке вероятностей событий вида , где — возможные значения, близкие соответственно к левой и правой границам диапазона изменения исследуемого признака .

Поскольку в этом случае числовые значения вероятностей малы,то из малости разностей (которая вытекает из центральной предельной теоремы) вовсе не следует малость относительных ошибок аппроксимации

которые, как правило, оказываются чрезмерно большими. Так, например, пусть — нормированный среднедушевой доход в семье (соответственно — заработная плата работающих членов семьи и другие составляющие семейного дохода) и пусть нас интересует доля q семей с очень высоким доходом, а именно с доходом, не меньшим некоторого достаточно высокого уровня Исследования показали, что точное значение этой доли в то время как соответствующая нормальная аппроксимация дала результат Разность сама по себе мала (как и следует из центральной предельной теоремы), однако относительная погрешность нормальной аппроксимации в данном случае составляет десятикратную величину, т. е. 1000 %! Особенно важным это предостережение оказывается при попытках использования нормальных аппроксимаций в задачах расчета зависимостей типа «предельная прочность (или пропускная способность) системы — вероятность разрушения (отказа в обслуживании)».

Замечание 2. Центральная предельная теорема позволяет проследить асимптотические связи, существующие между различными модельными законами распределения (см. гл. 6), с одной стороны, и нормальным законом — с другой. Опираясь на центральную предельную теорему, можно объяснить, в частности, следующие полезные для статистической практики факты:

1. Распределение -биномиальной случайной величины асимптотически (по ) нормально с параметрами .

Данный результат известен как теорема Муавра — Лапласа (доказана впервые Муавром в 1733 г., когда еще не была известна центральная предельная теорема) и является прямым следствием центральной предельной теоремы, примененной к случайным величинам (7.4) с учетом (7.5).

2. Распределение Х-пуассоновской случайной величины асимптотически (по ) нормально с параметрами

3. Распределение, -гипергеометрическойслучай, ной величины асимптотически (по нормально с параметрами

4. Функция распределения нормированной -мерной -полиномиальной случайной величины

при стремится к функции распределения несобственного (вырожденного) -мерного нормального закона с вектором нулевых средних значений и с ковариационной матрицей

имеющей ранг, равный (см., например, «Приложение» в [12]).

5. Распределение случайной величины асимптотически (по ) нормально с параметрами

6. Распределение случайной величины асимптотически (по ) нормально с параметрами

<< Предыдущий параграф Следующий параграф >>
Оглавление