ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

8.6.3. Метод наименьших квадратов.

Рассмотрим функцию известного вида от неизвестного векторного параметра и многомерной (неслучайной) переменной характеризующей условия проведения случайного эксперимента (наблюдения).

Пусть в результате эксперимента (наблюдения) мы регистрируем (при точном знании величины «сопутствующей» переменной значение функции ) со случайной ошибкой (см. также (3.9)):

Требуется по наблюдениям как можно точнее оценить параметры . В отличие от предыдущих схем оценивания (см. п. 8.6.1, 8.6.2) в данном случае мы не обязаны задаваться общим видом закона распределения ошибок (а следовательно, и случайных величин ).

Метод наименьших квадратов определяет оценку неизвестного параметра из условия

При весьма общих предположениях о природе случайных ошибок и структуре функций оценки, удовлетворяющие соотношению (8.27), являются состоятельными, асимптотически-несмещенными, асимптотически-нормальными и асимптотически-эффективными (см., например, [71, гл. 4]). Укажем здесь лишь некоторые основные требования к , соблюдение которых обеспечивает хорошие свойства оценок по методу наименьших квадратов:

а) случайные остатки имеют нулевые средние значения и одинаковые конечные дисперсии не зависящие ни от номера наблюдения i, ни от параметра

б) функция непрерывна и дифференцируема по всем параметрам

Способ вычисления оценок наименьших квадратов опирается на тот факт, что если является точкой минимума критерия

то оценки должны удовлетворять системе так называемых нормальных уравнений:

Или, что то же, оценки наименьших квадратов неизвестных параметров определяются как решение системы уравнений:

Представим описанные результаты в частном случае, когда функция является линейной и по сопутствующим переменным X, и по параметрам 0. Вновь «возвращаясь к матричным обозначениям гл. 3, а именно вводя в рассмотрение матрицу наблюдений (или «матрицу плана»)

и вектор-столбцы наблюдений исследуемой зависимой переменной и остаточных случайных компонент имеем (см. также (3.5)) . Соответственно

а система нормальных уравнений имеет вид

Матричная запись решения этой системы дает

Геометрическая интерпретация мнк-оценок в линейном случае.

Рассмотрим -мерное пространство векторов введем в нем расстояние между двумя векторами положив

В пространстве выделим линейное подпространство Т, натянутое на вектор-столбцы матрицы X, или, что то же самое, подпространство, образованное всеми векторами вида , где . Очевидно, что размерность Т совпадает с — рангом X, а потому не превосходит и равна только тогда, когда . Обозначим через S совокупность векторов в каждый из которых перпендикулярен подпространству Т. Размерность S равна Любой вектор U в однозначно разлагается на два взаимно перпендикулярных слагаемых:

таких, что . При этом является проекцией U на — проекцией U на

Оценка по методу наименьших квадратов (мнк-оценка) дает такое значение вектору , при котором длина вектора остатков минимальна, а это означает, что поиск мнк-оценки соответствует проектированию Y на Т и что . Поскольку разложение любого вектора в виде суммы вида (8.30) единственно, величина критерия имеет одно и то же значение для всех мнк-оценок, о чем уже сказано выше.

Рассмотрим теперь более подробно проекции Y на Т и S. Согласно базовому предположению (3.6) вектор ошибок имеет нормальное распределение в с нулевым средним и дисперсией по любому направлению, равной Представим его в виде Тогда

Из (8.32) с учетом размерности S и определения (см. п. 6.2.1) сразу же следует, что имеет -распределение. Отсюда для может быть предложена несмещенная оценка

Оптимальное свойство мнк-оценок.

В случае, когда единственная мнк-оценка определяется формулой (8.29), из которой с учетом предположений (3.6) следует, что

т. е. что единственная мнк-оценка является несмещенной (см. § 8.1). Покажем теперь, что среди всех линейных несмещенных оценок векторного параметра вида (таких, что ) имеет наименьшую обобщенную дисперсию (см. п. 5.6.7), равную

Для этого каждую вектор-строку матрицы А спроектируем на подпространства Т и S и из проекций соберем соответственно матрицы Поскольку то

Вектор-строки матрицы принадлежат S, т. е. перпендикулярны вектор-столбцам X, и, следовательно, второе слагаемое в (8.37) равно нулю. С учетом несмещенности отсюда следует, что векторы и должны совпадать при всех значениях . Это, принимая во внимание ранг X и принадлежность вектор-строк матриц к подпространству Т, возможно лишь когда

С другой стороны, учитывая разложение (8.3) для F, получаем, что

так как вектор-строки принадлежат взаимно перпендикулярным пространствам. Из (8.36), (8.38) и (8.39) следует, что произвольная линейная несмещенная оценка представима в виде

причем оба слагаемых в правой части (8.4) лежат в перпендикулярных подпространствах, а потому независимы.

Утверждение об оптимальности мнк-оценки следует сразу же из представления (8.40). самом деле, ковариационная матрица компонент оценки равна

где — некоторая неотрицательно-определенная матрица. Рассмотрим некоторые частные примеры.

1. В частном случае условия проведения наших наблюдений могут оставаться неизменными, тогда анализируемая функция не будет зависеть от сопутствующей переменной X. Пусть, в частности, так что т. е. задача сводится к оценке наблюдаемого со случайной ошибкой параметра и, быть может, дисперсии этой ошибки Критерий метода наименьших квадратов в данном примере имеет вид

Система нормальных уравнений (8.28) (состоящая в данном случае из одного уравнения) имеет вид

откуда

Если дополнительно предположить нормальность ошибки , то оценка по методу наименьших квадратов совпадает с оценкой полученной ранее методом максимального правдоподобия, неизвестного среднего значения нормальной случайной величины.

2. Пусть причем (т. е. не меняется в ходе наблюдений), а В качестве наблюдений мы имеем

Требуется оценить по этим наблюдениям параметры (задачу оценивания параметров в линейной модели парной регрессии, см., например, [6]).

Критерий метода наименьших квадратов в данном примере

Система нормальных уравнений (8.28) запишется:

откуда получаем:

где как обычно, средние арифметические величин соответственно .

Подробные сведения о методе наименьших квадратов можно найти, например, в [48], [71].

История развития метода, по-видимому, начинается с работы Лежандра 1805 г. «Новые методы определения орбит комет», в которой был впервые предложен функционал вида (8.27) как критерий качества оценивания.

Первое теоретико-вероятностное обоснование метода наименьших квадратов дано в работах Гаусса в 1809 и 1821 гг. В более общем виде теорема Гаусса о свойствах оценок наименьших квадратов сформулирована и доказана А. Марковым в 1912 г.

Метод наименьших квадратов получил самое широкое распространение в практике статистических исследований в первую очередь благодаря двум главным своим преимуществам: во-первых, он не требует знания закона распределения обрабатываемых наблюдений, во-вторых, он достаточно хорошо разработан в плане вычислительной реализации.

<< Предыдущий параграф Следующий параграф >>
Оглавление