ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Выводы

1. Основаниями теоретико-вероятностного математического аппарата являются: понятия случайного эксперимента, его возможного исхода и пространства элементарных событий; аксиома о существовании и нормировке вероятностей элементарных событий; определение случайного события и способа вычисления его вероятности.

2. Способ построения современной строгой вероятностной теории аксиоматический, причем для построения дискретного вероятностного пространства, т. е. для модельного математического описания механизма случайного эксперимента, имеющего лишь конечное пли счетное множество возможных элементарных исходов, достаточно постулировать одну аксиому (о существовании и нормировке вероятностей элементарных исходов) и одно определение (о способе вычисления вероятности любого события).

3. Термины «механизм случайного эксперимента», «реальный комплекс условий, индуцирующий исследуемый статистический ансамбль» w «вероятностное пространство» являются синонимами и могут быть математически заданы с помощью описания всех возможных элементарных исходов и сопоставления с каждым из них вероятности своего появления (с помощью аналитического задания, таблично, графически, алгоритмически).

4. Главная сложность построения вероятностного пространства, соответствующего исследуемому реальному комплексу условий, — в конкретном задании вероятностей элементарных событий. Из трех возможных подходов к решению этой задачи — априорного, апостериорно-частотного и апостериорно-модельного — последний является наиболее легко практически реализуемым и наиболее эффективным.

5. Основные правила действий в дискретном вероятностном пространстве задаются теоремами сложения и умножения вероятностей, формулами полной вероятности и Байеса.

6. В общем (непрерывном) вероятностном пространстве в отличие от дискретного среди подмножеств пространства элементарных событий могут быть такие, для которых не существует принципиальной возможности их наблюдения в результате исследуемого случайного эксперимента («ненаблюдаемые» или «неизмеримые» подмножества). Такие подмножества не могут быть названы событиями, так как если А — событие, то мы должны иметь возможность сказать, наступило оно или не наступило в результате эксперимента (в этом смысле оно «наблюдаемо»); только тогда можно говорить об относительной частоте его наступления в серии экспериментов, а следовательно, и о вероятности

7. Отмеченная в предыдущем пункте особенность общего вероятностного пространства требует введения дополнительных определений и аксиом, относящихся к определению случайных событий и к правилам действий с их вероятностями. Современная аксиоматическая концепция теории вероятностей (впервые полно и строго изложенная А. Н. Колмогоровым в 1933 г.) строит общее вероятностное пространство, отправляясь от определения случайного события (с помощью перечисления допустимых теоретикомножественных комбинаций над подмножествами, априори являющимися событиями) и аксиомы о вероятностях как о неотрицательных и ограниченных единицей числовых функциях, аргументами которых являются подмножества-события.

Эта концепция не противоречит рассмотренному ранее способу построения дискретного вероятностного пространства (она включает в себя этот способ в качестве частного случая и соответственно сохраняет все правила действий с вероятностями и событиями) и обусловливает возможность физической интерпретации вероятности события как относительной частоты его появления в достаточно длинной серии экспериментов.

8. Использование аксиоматической концепции теории вероятностей может в некоторых случаях, как и всякая другая модель, приводить к плохо физически интерпретируемым выводам.

9. В общем (непрерывном) вероятностном пространстве в отлнчие от дискретного могут существовать возможные события, обладающие нулевой вероятностью появления. Соответственно противоположные к ним события (их дополнения) хотя и не могут быть названы достоверными, но имеют вероятность осуществления, равную единице (события, происходящие «почти всегда»).

<< Предыдущий параграф Следующий параграф >>
Оглавление