ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

3.5.2. Линейные вероятностные модели.

Среди моделей, описывающих взаимосвязь между случайными величинами, выделяются так называемые линейные регрессионные модели. В достаточно общем случае они имеют вид

где Y — -мерный вектор наблюдений: — известная матрица плана размера — неизвестный -мерный вектор параметров; -мерный случайный вектор-столбец ошибок, удовлетворяющий условию

где — неизвестный скалярный параметр, а Е — символ операции теоретического усреднения (математического ожидания, см. п. 5.6.1). Распространена интерпретация , как наблюдения, зависимой переменной (отклика) в точке пространства наблюдений.

Покажем сначала, что приведенная выше (см. § 3.1) модель со шрифтами может рассматриваться как частный случай общей линейной модели. Для этого обозначим . Уравнения (3.1) теперь можно записать в виде (3.5) с помощью матрицы X размера , такой, что

Нулевая гипотеза при данной параметризации состоит в проверке равенства .

В качестве других частных случаев модели (3.5) и (3.6) укажем:

а) модель линейной регрессии первого порядка, когда имеется один объясняющий количественный показатель (фактор) и при его значении, равном результирующий (объясняемый) показатель (или отклик) равен:

б) модель однофакторного дисперсионного анализа с l градациями (неколичественного) объясняющего фактора и независимыми наблюдениями при каждой градации:

Для разрешимости модели дополнительно предполагается, что Наиболее часто интересуются вопросом, равны ли нулю все

в) модель двухфакторного анализа. Само название указывает, что имеются два объясняющих (неколичествеиных) фактора. Отклик для уровня первого фактора и уровня второго фактора имеет вид

где на эффекты факторов наложены дополнительные ограничения — независимые одинаково распределенные ошибки. Наиболее часто проверяемые гипотезы:

Линейные модели хорошо изучены, см., например, [71], [87].

<< Предыдущий параграф Следующий параграф >>
Оглавление