ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

6.3. Техника статистического моделирования наблюдений, подчиняющихся заданному распределению

6.3.1. Получение равномерно распределенных на отрезке [0, 1] случайных чисел.

Для получения в ЭВМ случайных чисел можно использовать два метода: «физический», когда с ЭВМ соединяется тот или иной «физический» датчик случайных чисел (например, счетчик числа -частиц, вылетающих из некоторого радиоактивного источника за фиксированный промежуток времени), и математический, когда в ЭВМ с помощью стандартных машинных команд генерируется регулярная последовательность чисел, являющаяся для внешнего наблюдателя случайной и удовлетворяющая основным неравенствам, которым должны удовлетворять настоящие случайные числа.

Эту последовательность часто называют последовательностью псевдослучайных чисел. В настоящее время чаще используется математический метод. Для этого есть несколько причин. Прежде всего в статистическом моделировании важно иметь возможность воспроизвести последовательности случайных чисел, чтобы, например, посмотреть, как на тех же данных будет работать другой метод статистической обработки. Далее, трудно гарантировать постоянную удовлетворительную работу физических датчиков. И наконец, в настоящее время найдены и проверены простые и вместе с тем надежные математические датчики.

Для получения последовательности псевдослучайных чисел чаще других применяется метод вычетов (мультипликативный датчик):

где — специально подобранные целые постоянные. Фиксация начального значения однозначно определяет последовательность . Поскольку число различных значений не превосходит числа различных вычетов по модулю последовательность имеет период Период, вообще говоря, зависит от значения Формулу (6.30) можно представить в виде

где означает дробную часть числа V.

Формула (6.31) дает возможность четче представить характер зависимости между g. Для этого разложим в бесконечную дробь по степеням что может быть представлено в виде , где каждое из может принимать значения от 0 до Из формулы (6.31) тогда следует, что , т. е. операция получения состоит в перенесении в запятой на позиций вправо и в отбрасывании целой части, равной

На практике хорошо себя зарекомендовали следующие значения и [34];

Проверка последовательности псевдослучайных чисел обычно сводится к тому, что для , где К порядка нескольких десятков, проверяется, насколько равномерно при заполняют единичный -мерный куб -мерные векторы

Результаты проверки датчика для БЭСМ-6 можно найти в [34]. Наиболее систематически и полно математические вопросы, связанные с построением датчиков псевдослучайных чисел, освещаются во втором томе монографии Кнута [42]. Там же описывается прием, как, используя два «независимых» датчика, имеющих периоды получить датчик с периодом порядка . Этот прием может быть полезен при получении псевдослучайных чисел на ЭВМ с короткими словами.

В дальнейшем при описании способов получения случайных величин используется алгоритмический язык Фортран и предполагается, что в основной программе описан датчик псевдослучайных чисел, обращение к которому осуществляет оператор CALL RAND (R), где R — имя псевдослучайного числа. Подпрограмма RAND (R) на основании заложенного в ней алгоритма по числу, стоящему в ячейке R, вычисляет следующее за ним псевдослучайное число и помещает его в ту же ячейку.

<< Предыдущий параграф Следующий параграф >>
Оглавление