ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

11.5. Анализ резко выделяющихся наблюдений

11.5.1. Постановка задачи.

В этом параграфе рассматриваются методы выделения наблюдений, которые сильно отклоняются от центра распределения. Иногда такие большие отклонения возникают в результате случайного просчета, неправильного чтения показаний измерительного прибора, случайного сдвига запятой в десятичной записи числа и т. д., т. е. в результате действительной ошибки. Иногда же они отражают более тонкие моменты, такие, как несоответствие в отдельных точках действительности используемой математической модели, незамеченное исследователем изменение условий эксперимента и т. п.

В любом случае с математической точки зрения речь идет о выделении наблюдений, величина которых не согласуется с распределением основной массы данных. Идентификация выделяющихся наблюдений позволяет обычно еще раз проверить условия их регистрации и процессирования и тем самым подчас выявить и устранить ошибку. Если же ошибку устранить не удается, то наблюдение обычно просто исключается из дальнейшей обработки как нетипичное.

Рассматриваемая задача разделяется на два этапа: выявление «подозрительных» наблюдений и проверка статистической значимости их отличия от основной массы данных.

Естественно, что оба этапа основываются на определенных предположениях о распределении как основной («незасоренной») части наблюдений, так и «выбросов» («засорений»). Обычно предполагается, что наблюдения незасоренной части имеют одномерное или многомерное нормальное распределение с неизвестными параметрами. При анализе отклонений наблюдений от математической модели иногда дополнительно предполагается, что среднее распределения отклонений равно нулю, т. е. что модель в среднем не вносит смещения. Относительно моделей для засорения единства предположений нет. Иногда предполагается, что выбросы имеют такую же дисперсию, что основная часть выборки, но заметно сдвинутое среднее. Иногда, что среднее не сильно отличается от среднего основной части, но зато дисперсия значительно больше. Для удобства дальнейших ссылок запишем эти предположения в более формальном виде. Пусть — результаты наблюдения, — наборы индексов из множества соответствующие незасоренной и засоренной частям выборки. Предположение о незасоренной части выборки:

(11.77)

где — неизвестные параметры.

Предположения о засоренной части случай сдвига среднего:

(11.78)

и случай большой дисперсии:

(11.79)

В случае когда из априорных соображений можно считать, что среднее основной части выборки равно нулю, (11.77) переходит в

а предположения относительно засоренной части — в

Прежде чем приступить к описанию конкретных методов выделения выбросов, отметим, что чисто статистический подход к проблеме идентификации и удаления нестандартных наблюдений, развиваемый в этом параграфе, требует определенной осторожности при интерпретации данных. Предположение однородности, лежащее в основе статистических процедур, в действительности может не иметь места, и выбросы могут оказаться наиболее важными наблюдениями, проливающими свет на то, как собирались данные.

<< Предыдущий параграф Следующий параграф >>
Оглавление