ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава 3. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ПРИКЛАДНОЙ СТАТИСТИКЕ

3.1. Для чего нужны математические модели

3.1.1. О двух подходах к статистическому моделированию.

Оценивая в гл. 2 взаимоотношения теории вероятностей и прикладной статистики, мы пришли к выводу, что если теория вероятностей предоставляет исследователю набор математических моделей, имитирующих механизмы функционирования гипотетических реальных явлений или систем стохастической природы, то одним из главных назначений прикладной статистики является обоснованный выбор среди множества возможных (как бы заранее заготовленных) моделей той, которая наилучшим (в определенном смысле) образом соответствует имеющимся в распоряжении исследователя статистическим данным, характеризующим реальное поведение конкретно исследуемой системы.

Таким образом, успешное решение проблемы наилучшей статистической обработки исходных данных зависит в первую очередь от знания подходящих моделей и от умения «прилаживать» эти модели к исследуемой реальной действительности и, если это необходимо, сконструировать новую, не содержащуюся в наборе имеющихся «заготовок» модель, отражающую специфику анализируемой конкретной задачи. Данная глава и посвящена изложению некоторых понятий и сведений, относящихся к этому «знанию» и «умению».

Построение и экспериментальная проверка модели, т. е. математическое описание интересующих исследователя связей и отношений между реальными элементами анализируемой системы, обычно основаны на одновременном использовании информации двух типов: а) априорной информации о природе и характере исследуемых соотношений; б) исходных статистических данных, характеризующих процесс и результат функционирования анализируемой системы.

При этом используется один из двух подходов (а точнее, либо только первый, либо их комбинация). Если исследователь располагает информацией обоих типов, то, как правило, используется прием содержательного (реалистического) математического моделирования, при котором из априорной информации о природе искомых соотношений (математически формализованной в виде некоторых исходных предпосылок или исходных допущений) удается вывести общий вид аналитических уравнений, описывающих эти соотношения, после чего с помощью статистического «переваривания» информации б) оцениваются численные значения параметров, входящих в упомянутые аналитические уравнения (этап подгонки или приладки модели). Если же исследователь располагает только априорной информацией типа а) или, при наличии информации обоих типов, желает «проиграть» (сымитировать) поведение анализируемой реальной системы при варьировании численных значений параметров, входящих в аналитическую запись модели, или искусственно (опираясь на модельные соотношения) сгенерировать статистические данные типа б) с целью их пополнения, то наряду с элементами описанного выше математического моделирования (реализованными в первую очередь) исследователь должен обратиться к помощи ЭВМ. Этот тип моделирования принято называть статистическим или моделированием типа «Монте-Карло».

<< Предыдущий параграф Следующий параграф >>
Оглавление