7.3.1. Центральная предельная теорема.
Если
независимые случайные величины, имеющие один и тот же закон распределения со средним значением
и с дисперсией
, то по мере неограниченного увеличения
функция распределения случайной величины

стремится к функции распределения стандартного нормального закона при любом заданном значении их аргументов, т. е.

для любого значения
, где
.
Таким образом, центральная предельная теорема дает математически строгое описание условий, индуцирующих механизм нормального закона распределения (см. неформальное обсуждение этих условий в п. 6.1.5). Она оправдывает, в частности, закономерность той центральной роли, которую играет нормальное распределение в теории и практике статистических исследований. Содержание центральной предельной теоремы можно считать дальнейшим (после закона больших чисел) уточнением стохастического поведения среднего арифметического из ряда случайных величин.
Центральная предельная теорема может быть распространена в различных направлениях: когда случайные слагаемые не являются одинаково распределенными (формулировка А. М. Ляпунова); когда компоненты не являются независимыми; наконец, когда случайные величины h являются многомерными.