1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
Макеты страниц
3.2.2. Моделирование механизма явления вместо формальной статистической фотографии.Остановимся подробнее на тезисе о ключевом характере второго этапа. Утверждается, что адекватность и соответственно эффективность модели будут решающим образом зависеть от того, насколько глубоко и профессионально был проведен анализ реальной сущности изучаемого явления при формировании априорной информации (т. е. в рамках второго этапа). Другими словами, при вероятностно-статистическом моделировании и, в частности, на этапе формирования априорной информации о физической природе реального механизма преобразования входных показателей в выходные (результирующие) какая-то часть этого механизма остается скрытой от исследователя (именно об этой части принято в соответствии с обиходной кибернетической терминологией говорить как о терном ящике»). Чем большее профессиональное знание механизма исследуемого явления продемонстрирует исследователь, тем меньше будет доля «черного ящика» в общей логической схеме моделирования и тем работоспособнее и точнее будет построенная модель. Вероятностностатистическое моделирование, полностью основанное на логике «черного ящика», позволяет получить исследователю лишь как бы мгновенную статистическую, фотографию анализируемого явления, в общем случае непригодную, например, для целей прогнозирования. Напротив, моделирование, опирающееся на глубокий профессиональный анализ природы изучаемого явления, позволяет в значительной мере теоретически обосновать общий вид конструируемой модели, что дает основание к ее широкому и правомерному использованию в прогнозных расчетах. Поясним это на примере из § 6.1. Пусть целью нашего исследования является лаконичное (параметризованное с помощью модели) описание функции плотности анализируемой случайной величины (заработной платы наугад выбранного из общей генеральной совокупности работника) по исходным данным, представленным случайной выборкой работников В качестве альтернативного рассмотрим подход, предусматривающий тщательный предмодельный профессиональный анализ локальных закономерностей, в соответствии с которыми формируется закон распределения заработной платы. Эти закономерности (мультипликативный характер редукции труда, принцип оплаты по труду, постоянство относительного варьирования заработной платы при переходе от работников одной категории сложности труда к другой и т. п., см. [2]) позволяют уже на следующем, третьем этапе моделирования теоретически (т. е. без апелляции к имеющейся у нас эмпирической функции плотности) обосновать выбор класса моделей, в пределах которого мы должны оставаться при подборе искомой модельной плотности. В рассмотренном примере таким классом был класс логарифмически-нормальных распределений (см. п. 6.1.6). После этого мы переходим к статистическому оцениванию параметров, участвующих в записи законов этого класса, т. е. переходим к четвертому этапу. Модель, полученная таким образом, как правило, несколько хуже (по формальным критериям), чем предыдущая, аппроксимирует эмпирическую плотность, построенную по данной конкретной выборке. Однако в отличие от модели, полученной в результате формальной статистической подгонки экспериментальных данных под одну из теоретических кривых, она остается устойчивой, инвариантной по отношению к смене выборок, т. е. она одинаково хорошо может описывать характер распределения, наблюдаемого в различных выборках из одной и той же генеральной совокупности. А если все-таки моделирование, идущее от более или менее бесспорных (быть может, частично подтвержденных экспериментом) исходных предпосылок о физической природе изучаемого явления, дает результаты, плохо согласующиеся с реальной действительностью? Причина этого (при условии аккуратного проведения третьего и четвертого этапов) одна: плохое соблюдение на практике всех (или части) принятых при моделировании в качестве априорных допущений исходных предпосылок. Оценка же этого явления может быть двоякой: если заложенные в основание модели исходные допущения признаются специалистами объективными закономерностями, в соответствии с которыми должен функционировать механизм исследуемого явления, то следует искать и устранять причины, приведшие к нарушению этих закономерностей; если же принятые допущения были результатом вынужденного упрощения на самом деле плохо различимого механизма, то следует усовершенствовать эти допущения, что приведет, естественно, и к изменению модели. В рассмотренном примере интерпретация временного рассогласования модели и действительности относилась как раз к первому типу. Проведенные сопоставления модельных и экспериментальных данных по распределению заработной платы работников за ряд лет (1956—1972 гг., см [2]) четко обозначили период их резкого рассогласования (1960—1963 гг.). Однако по мере удаления этого периода в прошлое прослеживается явная тенденция к сближению модельных и реальных данных. Более внимательный анализ показал, что момент резкого рассогласования следовал непосредственно за весьма существенным директивным вмешательством в существующие тарифные условия, вмешательством, которое, как показал дальнейший ход развития, плохо согласовывалось с целым рядом объективных экономических закономерностей. И факт, что в дальнейшем мы наблюдаем сближение модельных и реальных данных, говорит лишь о том, что эти объективные экономические закономерности постепенно все более сказывались на характере распределения, все более «выступали на поверхность», отвоевывая себе те или иные правовые формы! Примеры неформального (с раскрытием механизма явления) моделирования, к сожалению, не слишком многочисленны (см. [45], [2] и др.).
|
Оглавление
|