1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
Макеты страниц
4.1.3. Вероятностное пространство. Вероятности и правила действия с ними.Для полного описания механизма исследуемого случайного эксперимента недостаточно задать лишь пространство элементарных событий. Очевидно, наряду с перечислением всех возможных исходов исследуемого случайного эксперимента мы должны также знать, как часто в длинной серии таких экспериментов могут происходить те или другие элементарные события. Действительно, возвращаясь, скажем, к примерам 4.1-4.7, легко представить себе, что в рамках каждого из описанных в них пространств элементарных событий можно рассмотреть бесчисленное множество случайных экспериментов, существенно различающихся по своему механизму. Так, в примерах 4.1-4.3 мы будем иметь существенно различающиеся относительные частоты появления одних и тех же элементарных исходов, если будем пользоваться различными моментами и игральными костями (симметричными, со слегка смещенным центром тяжести, с сильно смещенным центром тяжести и т. п.) В примерах 4.4-4.7 частота появления дефектных изделий, характер засоренности дефектными изделиями проконтролированных партий и частоты появления определенного числа сбоев станков автоматической линии будут зависеть от уровня технологической оснащенности изучаемого производства: при одном и том же пространстве элементарных событий частота появления «хороших» элементарных исходов будет выше в производстве с более высоким уровнем технологии. Для построения (в дискретном случае) полной и законченной математической теории случайного эксперимента — теории вероятностей помимо уже введенных исходных понятий случайного эксперимента, элементарного исхода и случайного события необходимо запастись еще одним исходным допущением (аксиомой), постулирующим существование вероятностей элементарных событий (удовлетворяющих определенной нормировке), и определением вероятности любого случайного события. Аксиома.Каждому элементу![]() ![]() ![]() ![]() (отсюда, в частности, следует, что Определение вероятности события.Вероятность любого события А определяется как сумма вероятностей всех элементарных событий, составляющих событие А, т. е. если использовать символику![]() Отсюда и из (4.2) непосредственно следует, что всегда Все остальные понятия и правила действий с вероятностями и событиями будут уже производными от введенных выше четырех исходных определений (случайного эксперимента, элементарного исхода, случайного события и его вероятности) и одной аксиомы. Таким образом, для исчерпывающего описания механизма исследуемого случайного эксперимента (в дискретном случае) необходимо задать конечное или счетное множество всех возможных элементарных исходов Вероятностное пространство как раз и является понятием, формализующим такое описание механизма случайного эксперимента. Задать вероятностное пространство — это значит задать пространство элементарных событий Q и определить в нем вышеуказанное соответствие типа Очевидно, соответствие типа (4.4) может быть задано различными способами: с помощью таблиц, графиков, аналитических формул, наконец, алгоритмически. Как же построить вероятностное пространство, соответствующее исследуемому реальному комплексу условий? С наполнением конкретным содержанием понятий случайного эксперимента, элементарного события, пространства элементарных событий, а в дискретном случае — и любого разложимого случайного события затруднений, как правило, не бывает. А вот определить из конкретных условий решаемой задачи вероятности Априорный подход к вычислению вероятностей Например, возможен случай, когда пространство всех возможных элементарных исходов состоит из конечного числа N элементов, причем условия производства исследуемого случайного эксперимента таковы, что вероятности осуществления каждого из этих N элементарных исходов нам представляются равными (именно в такой ситуации мы находимся при подбрасывании симметричной монеты, бросании правильной игральной кости, случайном извлечении игральной карты из хорошо перемешанной колоды и т. п.). В силу аксиомы (4.2) вероятность каждого элементарного события равна в этом случае MN. Это позволяет получить простой рецепт и для подсчета вероятности любого события: если событие А содержит NA элементарных событий, то в соответствии с определением (4.3) Смысл формулы (4.3) состоит в том, что вероятность события в данном классе ситуаций может быть определена как отношение числа благоприятных исходов (т. е. элементарных исходов, входящих в это событие) к числу всех возможных исходов (так называемое классическое определение вероятности). В современной трактовке формула (4.3) не является определением вероятности: она применима лишь в том частном случае, когда все элементарные исходы равновероятны. Апостериорно-частотный подход к вычислению вероятностей
где Подобный способ вычисления вероятностей Во-вторых, в ситуациях, когда мы имеем достаточно большое число возможных элементарных исходов (а они могут образовывать и бесконечное, и даже, как это было уже отмечено в § 4.1, континуальное множество), даже в сколь угодно длинном ряду случайных экспериментов мы будем иметь возможные исходы Апостериорно-модельный подход к заданию вероятностей Опишем теперь основные правила действий с вероятностями событий, являющиеся следствиями принятых выше определений и аксиомы. Вероятность суммы событий (теорема сложения вероятностей).Сформулируем и докажем правило вычисления вероятности суммы двух событий Для этого разобьем каждое из множеств элементарных событий, составляющих события где В то же время в соответствии с определением суммы событий Из (4.6), (4.7) и (4.8) получаем формулу сложения вероятностей (для двух событий): Формула (4.9) сложения вероятностей может быть обобщена на случай произвольного числа слагаемых (см., например, [83, с. 105]): где «добавки» причем суммирование в правой части производится, очевидно, при условии, что все В частном случае, когда интересующая нас система Вероятность произведения событий (теорема умножения вероятностей). Условная вероятность.Рассмотрим ситуации, когда заранее поставленное условие или фиксация некоторого уже осуществившего события исключают из числа возможных часть элементарных событий анализируемого вероятностного пространства. Так, анализируя совокупность из N изделий массового производства, содержащую Как легко понять из этого примера, подсчет условных вероятностей — это, по существу, переход в другое, урезанное заданным условием В пространство элементарных событий, когда соотношение вероятностей элементарных событий в урезанном пространстве остается тем же, что и в исходном (более широком), но все они нормируются (делятся на Получим формулу условной вероятности в общем случае. Пусть В — событие (непустое), считающееся уже состоявшимся («условие»), а А — событие, условную вероятность которого Р(А|В) требуется вычислить. Новое (урезанное) пространство элементарных событий По определению, вероятность Р(А|В) — это вероятность события А в «урезанном» вероятностном пространстве т. е. или, что то же, Эквивалентные формулы (4.11) и (4.11') принято называть соответственно формулой условной вероятности и правилом умножения вероятностей. Еще раз подчеркнем, что рассмотрение условных вероятностей различных событий при одном и том же условии В равносильно рассмотрению обычных вероятностей в другом (урезайном) пространстве элементарных событий Независимость событий. Два события А и В называют независимыми, если Для пояснения естественности такого определения вернемт. е.ся к теореме умножения вероятностей (4.11) и посмотрим, в каких ситуациях из нее следует (4.12). Очевидно, это может быть тогда, когда условная вероятность Распространение определения независимости на систему более чем двух событий выглядит следующим образом. События Очевидно, в первой строке подразумевается (число сочетаний из k по два) уравнений, во второй — Свойство независимости событий сильно облегчает анализ различных вероятностей, связанных с исследуемой системой событий. Достаточно сказать, что если в общем случае для описания вероятностей всевозможных комбинаций событий системы Независимые события весьма часто встречаются в изучаемой реальной действительности они осуществляются в экспериментах (наблюдениях), проводимых независимо друг от друга в обычном физическом смысле. Именно свойство независимости исходов четырех последовательных бросаний игральной кости позволило (с помощью Формула полной вероятности.При решении многих практических задач зачастую сталкиваются с ситуацией, когда прямое вычисление вероятности интересующего нас события А трудно или невозможно, в то время как вполне доступно вычисление (или задание) условных вероятностей того же события (при различных условиях). В случае, когда условия которое принято называть формулой полной вероятности. Для доказательства формулы (4.14) заметим, что элементарные события, составляющие событие А, можно разбить на k непересекающихся групп, каждая из которых является общей частью (пересечением) события А с одним из событий Далее, воспользовавшись теоремой сложения вероятностей Формула Байеса.Обратимся вначале к следующей задаче. На складе имеются приборы, изготовленные тремя заводами: 20 % приборов, имеющихся на складе, изготовлено заводом № 1, 50 % — заводом № 2 и 30 % — заводом № 3. Вероятности того, что в течение гарантийного срока прибору потребуется ремонт, для продукции каждого из заводов равны соответственно 0,2; 0,1; 0,3. Взятый со склада прибор не имел заводской маркировки и потребовал ремонта (в течение гарантийного срока). Каким заводом вероятнее всего был изготовлен этот прибор? Какова эта вероятность? Если обозначить По формуле условной вероятности (4.11) Числитель этой дроби по теореме умножения вероятностей (4.11) может быть представлен в виде а знаменатель Подставляя (4.16) и (4.17) в (4.15), получаем Воспользовавшись этой формулой, нетрудно подсчитать искомые вероятности: Следовательно, вероятнее всего некондиционный прибор был изготовлен на заводе № 3. Доказательство формулы (4.18) в случае полной системы событий, состоящей из произвольного числа k событий, в точности повторяет доказательство формулы (4.18). В таком общем виде формулу принято называть формулой Байеса.
|
Оглавление
|