ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

6.2.3. F-распределение (распределение дисперсионного отношения).

Анализируя поведение отношения двух выборочных дисперсий вычисленных по на блюдениям двух выборок: извлеченных из одной и той же нормальной генеральной совокупности, английский статистик Р. Фишер в 1924 г. пришел к распределению, которое в дальнейшем стали называть -распределением и которое может быть определено в общем случае следующим образом.

Рассмотрим независимых и -нормально распределенных величин и положим

Очевидно (см. п. 6.2.1), та же самая случайная величина может быть определена и как отношение двух независимых соответствующим образом нормированных - распределенных величин , т. е.

Можно показать, что плотность вероятности случайной величины задается функцией

где, как обычно, — значение гамма-функции Эйлера в точке , а сам закон называется -распределением с числами степеней свободы числителя и знаменателя, равными соответственно

При реализации статистических процедур обработки данных используются следующие результаты, связанные с -распределением.

1. Если - эмпирические дисперсии, построенные по независимым выборкам из одной и той же нормальной генеральной совокупности, то отношение подчиняется -распределению с числами степеней свободы

2. Пусть — выборка из -мерной нормальной генеральной совокупности с вектором средних и ковариационной матрицей и пусть — соответственно выборочный вектор средних и выборочная ковариационная матрица, построенные по данной выборке (см. п. 5.6.7). Тогда случайная величина

подчиняется -распределению. В выражении (6.26) множитель

является многомерным обобщением -статистики Стьюдента (6.23), используемой при проверке гипотезы о величине среднего значения, и может быть интерпретирован как характеристика геометрической удаленности (в смысле метрики махаланобисовского типа, см. [12, с. 80]) выборочного среднего от соответствующего теоретического значения М.

3. Дополним рассмотренные выше условия и данные второй выборкой из той же самой -мерной нормальной генеральной совокупности и соответствующими ей эмпирическими характеристиками: вектором средних и ковариационной матрицей Введем в рассмотрение эмпирическую ковариационную матрицу построенную по двум имеющимся у нас выборкам:

Многомерным аналогом t-статистики (6.24), используемой для проверки однородности двух выборочных средних, будет величина

причем случайная величина

оказывается распределенной по закону -распределения.

Основные числовые характеристики -распределения:

Отсюда непосредственно следует, что при -распределение всегда имеет модальное значение, меньшее единицы, и среднее значение, большее единицы. Это означает, в частности, что данное распределение имеет положительную асимметрию не только при (что вытекает из вида ), но и при

Р. Фишером данный тип распределений выводился не для случайной величины а для ее натурального логарифма (поделенного пополам), т. е. для случайной величины Распределение этой случайной величины часто называют -распределением Фишера. Однако в современной статистической практике предпочитают использовать -распределение, обладающее более простыми свойствами.

<< Предыдущий параграф Следующий параграф >>
Оглавление