ЕГЭ и ОГЭ
Веселые шарики
Главная > Математика > Прикладная статистика: Основы моделирования и первичная обработка данных
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

8.6.2. Метод моментов.

Пусть, как и прежде, — исследуемая -мерная случайная величина, подчиняющаяся закону распределения где функция — плотность вероятности, если непрерывна, и вероятность если дискретна, зависит от некоторого, вообще говоря, многомерного параметра . И пусть мы хотим оценить неизвестное значениехэтого параметра, т. е. построить оценку 0 по имеющейся в нашем распоряжении выборке, состоящей из независимых наблюдений где

Метод моментов заключается в приравнивании определенного количества выборочных моментов к соответствующим теоретическим (т. е. вычисленным с использованием функции моментам исследуемой случайной величины, причем последние, очевидно, являются функциями от неизвестных параметров Рассматривая количество моментов, равное числу k подлежащих оценке параметров, и решая полученные уравнения относительно этих параметров, мы получаем искомые оценки. Таким образом, оценки по методу моментов неизвестных параметров являются решениями системы уравнений:

(очевидно, если анализируемая случайная величина дискретна, интегралы в левых частях (8.25) следует заменить соответствующими суммами типа

Число уравнений в системе (8.25) должно быть равным числу k оцениваемых параметров. Вопрос о том, какие именно моменты включать в систему (8.25) (начальные, центральные или их некоторые модификации типа коэффициентов асимметрии или эксцесса), следует решать, руководствуясь конкретными целями исследования и сравнительной простотой формы зависимости альтернативных теоретических характеристик от оцениваемых параметров . В статистической практике дело редко доходит даже до моментов четвертого порядка (исключение составляет, пожалуй, практика эксплуатации так называемой «системы кривых Пирсона», см., например, [16, с. 101], однако этот чисто формальный аппарат подгонки эмпирического распределения под одну из теоретических кривых практически не в состоянии, с нашей точки зрения, решать сколь-нибудь интересные задачи содержательного статистического анализа данных).

К достоинствам метода моментов следует отнести его сравнительно простую вычислительную реализацию, а также то, что оценки, полученные в качестве решений системы (8.25), являются функциями от выборочных моментов. Это упрощает исследование статистических свойств оценок метода моментов: можно показать (см. [48, гл. 27 и 8]), что при довольно общих условиях распределение оценки такого рода при больших асимптотически-нормально, среднее значение такой оценки отличается от истинного значения параметра на величину порядка , а стандартное

отклонение асимптотически имеет вид , где с — некоторая постоянная величина.

В то же время, как показал Р. Фишер (см. [48]), асимптотическая эффективность оценок, полученных методом моментов, оказывается, как правило, меньше единицы, и в этом отношении они уступают оценкам, полученным методом максимального правдоподобия. Тем не менее метод моментов часто очень удобен на практике. Иногда оценки, получаемые с помощью метода моментов, принимаются в качестве первого приближения, по которому можно определять другими методами оценки более высокой эффективности.

Вернемся к нашим примерам.

В примере 8.3 в качестве системы (8.25) имеем:

что дает уже знакомые нам по методу максимального правдоподобия оценки для параметров:

Нормальное распределение, так же как и распределение Пуассона (в чем легко убедиться, обратившись к примеру 8.4), относится к тем редким случаям, когда оценки по методу моментов совпадают с оценками по методу максимального правдоподобия.

Построение системы (8.25) в примере 8.5 дает:

Откуда легко получаем оценки:

Можно сравнить асимптотическую эффективность оценок, полученных методом максимального правдоподобия и методом моментов: учитывая, что дисперсия оценок (8.26) как дисперсия функций выборочных моментов имеет порядок (см. [48, с. 388]), и принимая во внимание соотношение (8.22), в соответствии с которым дисперсии оценок по методу максимального правдоподобия тех же параметров имеют порядок получаем, что эффективность в сравнении с эффективностью и стремится к нулю при

Реализация метода моментов в примере 8.6 дает

Следовательно,

Для подсчета среднего значения и дисперсии оценки воспользуемся следующими фактами: а) случайную величину распределенную экспоненциально с параметром и с параметром сдвига (см. п. 6.1.8), можно интерпретировать как частный случай гамма-распределенной случайной величины с параметрами и с параметром сдвига (см. п. 6.2.5); б) сумма независимых случайных величин каждая из которых распределена по закону гамма с параметрами и с параметром сдвига , подчиняется гамма-распределению с параметрами и с тем же самым параметром сдвига (см. п. 6.2.5). Поэтому

Учитывая выражение (8.24) для среднего квадрата ошибки «подправленной» оценки по методу максимального правдоподобия того же параметра , получаем

т. е. и в этом случае асимптотическая эффективность оценки по методу моментов стремится к нулю.

<< Предыдущий параграф Следующий параграф >>
Оглавление