ЕГЭ и ОГЭ
Хочу знать
Главная > Разное > Передача дискретных сообщений
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

6.2. СИГНАЛЫ, ИСПОЛЬЗУЕМЫЕ В ТЕХНИКЕ ПДС. СВОЙСТВА СИГНАЛОВ

Общие положения.

Сигналы характеризуются длительностью шириной спектра и динамическим диапазоном . В качестве обобщенной характеристики используется объем сигнала Длительность сигнала определяет время его суще ствования, ширина спектра — диапазон частот, в котором сосредоточена основная энергия сигнала. Динамический диапазон характеризует отношение наибольшей мгновенной мощности сигнала Ртах к наименьшей допустимое значение которой определяется мощностью помех.

Важной характеристикой сигналов является также база . Сигналы называются узкополосными (простыми), если и широкополосными (сложными), если

Элементарные сигналы, получаемые на выходе УПС при использовании -позиционного кода, можно разделить на следующие группы [6.1]:

сигналы обеспечивающие получение максимальной помехоустойчивости по отношению к флуктуационным помехам в детерминированных каналах. Энергия этих сигналов чаще всего одинакова: при а скалярное произведение при ортогональные сигналы, для биортогональные сигналы, для которых величина m всегда четная, любому из m сигналов всегда соответствует один противоположный сигнал, а остальные сигналов ортогональны; неортогональные сигналы, для которых соблюдается условие

Примером сигналов, обеспечивающих максимальную помехоустойчивость при детерминированном неискажающем канале и аддитивном белом шуме, являются сигналы, модулированные по фазе, и двухполюсные сигналы постоянного тока. К ортогональным относятся сигналы двоичной частотной модуляции (ЧМ), если частоты отрезков гармонических сигналов кратны частоте модуляции. Биортогональные сигналы используются при двукратной фазовой модуляции, когда Неортогональные сигналы применяются при фазовой модуляции, когда сдвиги между отдельными сигналами составляют, например 0°, 120° и 240°.

Многие задачи анализа и синтеза реальных сигналов упрощаются благодаря тому, что эти сигналы, как правило, сложные по форме, можно представить в виде простых сигналов. Это удобно для последующего анализа их прохождения через те или иные цепи. Например, некоторый сигнал может быть представлен в виде совокупности ортогональных составляющих (элементарных сигналов):

причем бесчисленным количеством способов. Запись (6.1) называют обобщенным рядом Фурье. Интервал показывает время действия сигнала. Так как система ортогональных функций применяемая при разложении, заранее известна, то сигнал определяется набором весовых коэффициентов для этих функций.

Такие наборы чисел называются спектрами сигналов. Спектр сигнала, представленный в виде суммы спектральных составляющих (6.1), называется дискретным.

Если для представления сигнала недостаточно дискретного набора базисных функций а требуется несчетное множество базисных функций отличающихся значением непрерывно изменяющегося параметра р, то сигнал представляется в виде интеграла

который называется обобщенным интегралом Фурье. Спектр такого сигнала характеризуется функцией непрерывной переменной (3 и называется непрерывным.

Рассматривая прохождение каждой составляющей спектра через линейную цепь с заданными характеристиками, сигнал на выходе цепи получаем также в виде (6.1) или (6.2) с весовыми коэффициентами или в общем случае отличными от или и зависящими от характеристик рассматриваемой цепи.

Помимо анализа в теории ПДС приходится решать задачи синтеза сигналов. Они могут быть двух типов: структурный синтез— определение формы сигналов, удовлетворяющих заданным требованиям; параметрический синтез — определение параметров сигналов известной формы. Если в процессе синтеза необходимо обеспечить экстремум того или иного функционала (или функции), который характеризует качество синтеза, то синтез называется оптимальным.

На практике широко используются системы сигналов прямоугольной и синусоидальной форм. Прямоугольные сигналы отличаются друг от друга амплитудой, длительностью, числом и местоположением импульсов прямоугольной формы на единичном интервале то. Элементарные сигналы синусоидальной формы представляют собой отрезки синусоидальных колебаний, отличных друг от друга по амплитуде, частоте и фазе.

<< Предыдущий параграф Следующий параграф >>
Оглавление