Главная > Математика > Преобразования и перестановки
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

6. Группа симметрий куба.

Симметрии куба, как и симметрии тетраэдра делятся на два типа — самосовмещения, при которых точки куба не изменяют своего положения относительно друг друга, и преобразования, оставляющие куб в целом на месте, но передвигающие его точки относительно друг друга. Преобразования первого типа мы, как и в случае тетраэдра, будем называть вращениями. Все вращения, очевидно, образуют группу, которая называется группой вращений куба. Опишем сначала строение этой группы.

Имеется ровно 24 вращения куба вокруг различных осей симметрии.

В самом деле, при поворотах куба место нижней грани может занять любая из 6 граней куба (рис. 28). Для каждой из 6 возможностей — когда указано, какая именно грань расположена внизу, — имеется 4 различных расположения куба, соответствующих его поворотам вокруг оси, проходящей через центры верхней и нижней граней, на углы

Таким образом, получаем вращений куба. Укажем их в явном биде.

Куб имеет центр симметрии (точка пересечения его диагоналей), 3 оси симметрии четвертого порядка, 4 оси симметрии третьего порядка и 6 осей симметрии второго порядка. Достаточно рассмотреть вращения вокруг осей симметрии.

а) Оси симметрии четвертого порядка — это оси проходящие через центры противоположных граней: Вокруг каждой из этих осей имеется по три нетождественных вращения, а именно вращения на углы . Этим вращениям соответствуют 9 перестановок вершин куба, при которых вершины противоположных граней переставляются циклически и согласовано. Например, перестановки

отвечают поворотам вокруг оси .

б) Осями симметрии третьего порядка являются диагонали куба. Вокруг каждой из четырех диагоналей [1, 7], [2, 8], [3, 5], [4, 6] имеется по два нетождественных вращения на углы . Например, вращения вокруг диагонали [1, 7] определяют такие перестановки вершин куба:

Всего получаем 8 таких вращений.

в) Осями симметрии второго порядка будут прямые, соединяющие середины противолежащих ребер куба. Имеется шесть пар противоположных ребер (например, [1, 2], [7, 8]), каждая пара определяет одну ось симметрии, т. е. получаем 6 осей симметрии второго порядка. Вокруг каждой из этих осей имеется одно нетождественное вращение. Всего — 6 вращений. Вместе с тождественным преобразованием получаем 9 + 8 + 6 + 1 = 24 различных вращения. Итак, все вращения куба указаны. Вращения куба определяют перестановки на множествах его вершин, ребер, граней и диагоналей.

Рис. 28

Рассмотрим, как действует группа вращений куба на множестве его диагоналей. Различные вращения куба переставляют диагонали куба по-разному, т. е. им соответствуют различные перестановки на множестве диагоналей (проверьте!). Поэтому группа вращений куба определяет группу перестановок на множестве диагоналей, состоящую из 24 перестановок. Поскольку куб имеет лишь 4 диагонали, группа всех таких перестановок совпадает с симметрической группой на множестве диагоналей. Итак, любая перестановка диагоналей куба соответствует некоторому его вращению, причемразным перестановкам соответствуют разные вращения.

Опишем теперь всю группу симметрий куба. Куб имеет три плоскости симметрии, проходящие через его центр. Симметрии относительно этих плоскостей в сочетании со всеми вращениями куба дают нам еще 24 преобразования, являющихся самосовмещениями куба. Поэтому полная группа симметрий куба состоит из 48 преобразований.

Рис. 29

<< Предыдущий параграф Следующий параграф >>
Оглавление