1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
Макеты страниц
2. Некоторые важные типы расширенийРасширение К поля Р называется конечным, если в поле К существуют такие элементы Обладающая этим свойством система элементов К понятию конечного расширения можно подойти и с другой стороны, заметив, что любое расширение L поля Р можно рассматривать как линейное пространство над полем Р. Действительно, элементы поля К можно складывать и умножать на элементы поля Р, причем обе операции (сложение и умножение на элементы поля Р), очевидно, обладают всеми необходимыми свойствами. С этой точки зрения расширение К тогда и только тогда конечно, когда оно имеет конечную размерность (как линейное пространство над полем Р), а система элементов тогда и только тогда является его базисом (в только что определенном смысле), когда она является его базисом в смысле теории линейных, пространств. Так как все базисы конечномерного линейного пространства состоят из одного и того же числа векторов, то, в частности, все базисы поля К над полем Р состоят из одного и того же числа элементов. Это число называется степенью поля К над полем Р и обозначается через Задача. Доказать, что степень Пусть Р — произвольное поле (числовое) и Это минимальное расширение обозначается через Очевидно, что Задача. Доказать, что поле Число а называется алгебраическим над полем Р, если оно является корнем некоторого (не равного тождественно нулю) многочлена с коэффициентами из поля Р. Люббй элемент поля Р, очевидно, алгебраичен над этим полем (если верно и обратное, т. е. если любое алгебраическое над полем Р число принадлежит этому полю, то Р называется алгебраически замкнутым полем; ср. п. 1). Очевидно, далее, что любое число, алгебраическое над полем Р, является алгебраическим числом и над любым расширением поля Р. Подчеркнем, что обратное утверждение, вообще говоря, неверно. Например, любое комплексное число является алгебраическим над полем D действительных чисел (ибо оно является корнем квадратного трехчлена с действительными коэффициентами), тогда как существуют числа (даже действительные), не алгебраические над полем R рациональных чисел. В качестве примера неалгебраических над полем R чисел можно указать известные числа ей и, неалгебраичность которых доказывается в полных курсах теории чисел (см. также ниже, ч. III, гл. 4, п. 4). Расширение К поля Р называется алгебраически порожденным, если оно порождается некоторой конечной системой алгебраических над полем Р чисел, т. е. если существуют такие алгебраические над полем Р числа Расширение К поля Р называется составным алгебраическим расширением, если существует такая цепочка подполей начинающаяся с поля Р и кончающаяся полем К, что для любого Наконец, расширение К поля Р называется алгебраическим, если любой его элемент является числом алгебраическим над полем Р. Таким образом, мы ввели следующие пять типов расширения: 1° конечные расширения; 2° алгебраически порожденные расширения; 3° составные алгебраические расширения; 4° простые алгебраические расширения; 5° алгебраические расширения. В этой главе мы изучим соотношения, имеющиеся между этими типами расширений, а также строение расширений каждого из этих типов (кроме, впрочем, последнего).
|
Оглавление
|