ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Исследование операций
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

4. ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ С ОГРАНИЧЕНИЯМИ-НЕРАВЕНСТВАМИ. ПЕРЕХОД ОТ НЕЕ К ОЗЛП И ОБРАТНО

На практике ограничения в задаче линейного программирования часто задаются не уравнениями, а неравенствами.

Покажем, как можно перейти от задачи с ограничениями-неравенствами к основной задаче линейного программирования.

Пусть имеется задача линейного программирования с переменными , в которой ограничения, наложенные на переменные, имеют вид линейных неравенств. В некоторых из них знак неравенства может быть а других (второй вид сводится к первому простой переменой знака обеих частей). Поэтому зададим все ограничения-неравенства в стандартной форме:

Будем считать, что все эти неравенства линейно независимы (т. е. никакое из них нельзя представить в виде линейной комбинации других).

Требуется найти такую совокупность неотрицательных значений которая удовлетворяла бы неравенствам (4.1), и, кроме того, обращала бы в минимум линейную функцию:

От поставленной таким образом задачи легко перейти к основной задаче линейного программирования. Действительно, введем обозначения:

где — некоторые новые переменные, которые мы будем называть «добавочными». Согласно условиям (4.1), эти добавочные переменные так же, как и должны быть неотрицательными.

Таким образом, перед нами возникает задача линейного программирования в следующей постановке: найти такие неотрицательные значения переменных чтобы они удовлетворяли системе уравнений (4.3) и одновременно обращали в минимум линейную функцию этих переменных:

Как видно, перед нами в чистом виде основная задача линейного программирования (ОЗЛП). Уравнения (4.3) заданы в форме, уже разрешенной относительно базисных переменных которые выражены через свободные переменные Общее количество переменных равно , из них «первоначальных» и «добавочных». Функция L выражена только через «первоначальные» переменные (коэффициенты при «добавочных» переменных в ней равны нулю).

Таким образом, задача линейного программирования с ограничениями-неравенствами сведена нами к основной задаче линейного программирования, но с большим числом переменных, чем первоначально было в задаче.

Пример 1 Имеется задача линейного программирования с ограничениями-неравенствами: иайти неотрицательные значения переменных удовлетворяющие условиям

и обращающие в минимум линейную функцию

Требуется привести эту задачу к виду ОЗЛП.

Решение. Приводим неравенства (4.4) к стандартной форме;

Вводим дополнительные переменные:

Задача сводится к тому, чтобы найти неотрицательные значения переменных

удовлетворяющие уравнениям (4.6) и обращающие в минимум линейную функцию (4.5).

Мы показали, как от задачи линейного программирования с ограничениями-неравенствами можно перейти к задаче с ограничениями-равенствами (ОЗЛП). Всегда возможен и обратный переход — от ОЗЛП к задаче с ограничениями-неравенствами. Если в первом случае мы увеличивали число переменных, то во втором случае будем его уменьшать, устраняя базисные переменные и оставляя только свободные.

Пример 2. Имеется задача линейного программирования с ограничениями-равенствами (ОЗЛП):

и минимизируемой функцией

Требуется записать ее как задачу линейного программирования с ограничениями-неравенствами.

Решение. Так как , то выберем какие-то две из переменных в качестве свободных. Заметим, что переменные в качестве свободных выбирать нельзя, так как они связаны первым из уравнений (4 7): значение одной из них полностью определяется значением другой, а свободные переменные должны быть независимыми

По такой же причине нельзя в качестве свободных выбрать переменные (их связывает второе уравнение ). Выберем в качестве свободных переменные и выразим через них все остальные:

Так как условия (4 9) могут быть заменены неравенствами:

Рис. 2.18

Перейдем в выражении линейной функции L к свободным переменным Подставляя в L вместо и их выражения (4.9). получим:

Таким образом, задача сведена к задаче линейного программирования с ограничениями-неравенствами. Ее геометрическая интерпретация показана на рис. 2.18. Основная прямая параллельна той стороне ОДР, где V достигает минимума. Следовательно, все точки участка АВ дают оптимальное решение. Беря в качестве решения, например, координаты точки А, получим:

При таких значениях переменных линейная функция L достигает минимума, равного

Таким образом, мы можем по произволу переходить от ОЗЛП к задаче линейного программирования с ограничениями-неравенствами и обратно. Если в числе ограничений задачи есть как уравнения, так и неравенства, рекомендуется произвести унификацию и перейти в какой-либо единообразной форме, например ОЗЛП.

Пример 3. Рассматривается задача линейного программирования с переменными и ограничениями вида

Минимизируется функция

Требуется привести задачу к ОЗЛП.

Решение. Введением добавочных переменных приведем условия (4.12) к виду ОЗЛП:

Минимизируемая функция остается в виде (4.13).

<< Предыдущий параграф Следующий параграф >>
Оглавление