1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
Макеты страниц
3. ПЛАТЕЖНАЯ МАТРИЦАРассмотрим конечную игру, в которой игрок («мы») имеет Если игра содержит кроме личных случайные ходы, то выигрыш при паре стратегий Предположим, что нам известны значения Такая таблица называется платежной матрицей или просто матрицей игры. Заметим, что построение платежной матрицы, особенно для игр с большим количеством стратегий, может само по себе представлять весьма непростую задачу. Например, для шахматной игры число возможных стратегий так велико, что построение платежной матрицы (даже с привлечением вычислительных машин) является пока практически неосуществимым. Однако в принципе любая конечная игра может быть приведена к матричной форме. Рассмотрим несколько элементарных примеров игр и построим для них платежные матрицы. Пример 1. Игра «поиск», Имеется два игрока А и В; игрок А прячется, а В его ищет. В распоряжении А имеется два убежища (I и II), любое из которых он может выбрать по своему усмотрению. Условия игры таковы: если В найдет А в том убежище, где А спрятался, то А платит ему штраф 1 руб; если В не найдет А (т. е. будет искать в другом убежище), то он сам должен заплатить А такой же штаф. Требуется построить платежную матрицу. Решение. Игра состоит всего из двух ходов, оба — личные. У нас (А) две стратегии:
У противника (В) тоже две стратегии:
Перед нами На примере Этой игры, как она ни элементарна, можно уяснить себе некоторые важные идеи теории игр. Предположим сначала, что данная игра выполняется только один раз (играется единственная «партия»). Тогда, очевидно, нет смысла говорить о преимуществах тех или других стратегий — каждый из игроков может с равным основанием принять любую из них. Однако при многократном повторении игры положение меняется. Действительно, допустим, что мы (игрок А) выбрали какую-то стратегию (скажем, Очевидно, надежным способом, гарантирующим нас от верного проигрыша, будет такая организация выбора в каждой партии, когда мы сами его наперед не знаем. Например, можно бросить монету, и, если выпадет герб, выбрать убежище I, а если решка — убежище II. Печальное положение, в котором оказался игрок А (чтобы не проигрывать, выбирать убежище случайным образом), очевидно, присуще не только ему, но и его противнику В, для которого справедливы все вышеприведенные рассуждения. Оптимальной стратегией каждого оказывается «смешанная» стратегия, в которой две возможные стратегии игрока чередуются случайным образом, с одинаковыми вероятностями. Таким образом, мы путем интуитивных рассуждений подошли к одному из существенных понятий теории игр — к понятию смешанной стратегии т. е. такой, в которой отдельные «чистые» стретегии чередуются случайным образом с какими-то вероятностями. В данном примере из соображений симметрии ясно, что стратегии Пример 2. Игра «три пальца». Игроки А и В одновременно и независимо друг от друга показывают один, два или три пальца. Выигрыш или проигрыш решает общее число показанных пальцев. Выигрыш (в рублях) равен этому числу; если оно четное — выигрывает А, а В ему платит; если нечетное — наоборот. Требуется построить платежную матрицу. Решение. У каждого игрока по три стратегии: показывать один, два или три пальца. Матрица игры 3x3 имеет вид: Проанализируем ситуацию. Очевидно, на любую нашу стратегию противник может ответить наихудшим для нас образом. Например, если мы выбирем Однако попробуем стать на точку зрения второго игрока (В). Его положение тоже не из блестящих. Если он выберет Выходит, игра невыгодна ни тому, ни другому из игроков: каждый из них, выбрав какую-то определенную стратегию, осужден на проигрыш! Это наводит на мысль, что и здесь выход — в применении смешанных стратегий; действительно, так оно и есть, но в данном примере дело обстоит не так просто, как в предыдущем, и чтобы найти оптимальные стратегии сторон, нужно научиться решать игры. В дальнейшем мы вернемся к этому примеру и найдем его решение. Пример 3. Игра «вооружение и самолет». В нашем распоряжении имеются три вида вооружения: Решение. Матрица игры 3x3 имеет вид: где выигрыш — вероятность поражения самолета (мы стремимся его максимизировать, а противник — минимизировать). Над этой игрой стоит подумать, так как она обладает некоторыми особыми свойствами, незаметными на первый взгляд. Станем сперва на точку зрения игрока А и переберем одну за другой все его стратегии. На Станем теперь на точку зрения противника; не забудем, что он хочет отдать поменьше! Пусть он выбирает Мы видим, что в данном примере стратегии В дальнейшем мы увидим, что пара стратегий, обладающих таким свойством, являются оптимальными стратегиями сторон и образуют так называемое решение игры.
|
Оглавление
|