ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Исследование операций
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

8. ПРОЦЕСС «ГИБЕЛИ И РАЗМНОЖЕНИЯ»

В предыдущем параграфе мы убедились, что зная размеченный граф состояний системы, можно сразу написать алгебраические уравнения для предельных вероятностей состояний. Таким образом, если две непрерывные цепи Маркова имеют одинаковые графы состояний и различаются только значениями интенсивностей то нет надобности находить предельные вероятности состояний для каждого из графов в отдельности: достаточно составить и решить в буквенном виде уравнения для одного из них, а затем подставить вместо соответствующие значения.

Рис. 4.38

Для многих часто встречающихся форм графов линейные уравнения легко решаются в буквенном виде.

В данном параграфе мы познакомимся с одной очень типичной схемой непрерывных марковских цепей — так называемой «схемой гибели и размножения».

Марковская непрерывная цепь называется «процессом гибели и размножения», если ее граф состояний имеет вид, представленный на рис. 4.38, т. е. все состояния можно вытянуть в одну цепочку, в которой каждое из средних состояний связано прямой и обратной связью с каждым из соседних состояний, а крайние состояния — только с одним соседним состоянием.

Пример 1. Техническое устройство состоит из трех одинаковых узлов; каждый из них может выходить из строя (отказывать); отказавший узел немедленно начинает восстанавливаться. Состояния системы нумеруем по числу неисправных узлов:

— все три узла исправны;

— один узел отказал (восстанавливается), два исправны;

— два узла восстанавливаются, один исправен;

— все узла восстанавливаются.

Граф состояний показан на рис. 4.39. Из графа видно, что процесс, протекающий в системе, представляет собой процесс «гибели и размножения».

Рис. 4.39

Схема гибели и размножения очень часто встречается в самых разнообразных практических задачах; поэтому имеет смысл заранее рассмотреть эту схему в общем виде и решить соответствующую систему алгебраических уравнений с тем, чтобы в дальнейшем, встречаясь с конкретными процессами, протекающими по такой схеме, не решать задачу каждый раз заново, а пользоваться уже готовым решением.

Итак, рассмотрим случайный процесс гибели и размножения с графом состояний, представленным на рис. 4.40

Рис. 4.40

Напишем алгебраические уравнения для вероятностей состояний. Для первого состояния имеем:

Для второго состояния суммы членов, соответствующих входящим и выходящим стрелкам, равны:

Но, в силу (8.1), можно сократить справа и слева равные друг другу члены получим:

и далее, совершенно аналогично,

Одним словом, для схемы гибели и размножения члены, соответствующие стоящим друг над другом стрелкам, равны между собой:

где k принимает все значения от 2 до .

Итак, предельные вероятности состояний в любой схеме гибели и размножения удовлетворяют уравнениям:

и нормировочному условию:

Будем решать эту систему следующим образом: из первого уравнения (7.3) выразим

из второго, с учетом (8.5), получим:

из третьего, с учетом (8.6):

и вообще

Эта формула справедлива для любого k от 2 до .

Обратим внимание на ее структуру. В числителе стоит произведение всех плотностей вероятности перехода (интенсивностей) стоящих у стрелок, направленных слева направо, с начала и вплоть до той, которая идет в состояние в знаменателе — произведение всех интенсивностей стоящих у стрелок, идущих справа налево, опять-таки, с начала и вплоть до стрелки, исходящей из состояния При в числителе будет стоять произведение интенсивностей стоящих у всех стрелок, идущих слева направо, а в знаменателе — у всех стрелок, идущих справа налево.

Итак, все вероятности выражены через одну из них: Подставим эти выражения в нормировочное условие: Получим:

откуда

Остальные вероятности выражаются через

Таким образом, задача «гибели и размножения» решена в общем виде: найдены предельные вероятности состояний.

Пример 2. Найти предельные вероятности состояний для процесса гибели и размножения, граф которого показан на рис. 4.41.

Рис. 4.41

Решение По формулам (8.8) и (8.9) имеем:

Пример 3. Прибор состоит из трех узлов; поток отказов — простейший, среднее время безотказной работы каждого узла равно Отказавший узел сразу же начинает ремонтироваться; среднее время ремонта (восстановления) узла равно р; закон распределения этого времени показательный (поток восстановлений — простейший). Найти среднюю производительность прибора, если при трех работающих узлах она равна 100%, при двух — 50%, а при одном и менее — прибор вообще не работает.

Решение. Перечень состояний системы и граф состояний уже приводились в примере 1 данного параграфа. Разметим этот граф, т. е. проставим у каждой стрелки соответствующую интенсивность (см. рис. 4.42).

Так как поток отказов каждого узла — простейший, то промежуток времени между отказами в этом потоке распределен по показательному закону с параметром где - среднее время безотказной работы узла.

Рис. 4.42

По стрелкам вправо систему переводят отказы. Если система находится в состоянии то работают три узла; каждый из них подвергается потоку отказов с интенсивностью значит, поток отказов, действующий на всю систему, в три раза более интенсивен:

Если система находится в состоянии то работают два узла; общий поток отказов имеет интенсивность: Аналогично

По стрелкам влево систему переводят ремонты (восстановления). Среднее время восстановления узла равно значит, интенсивность потока восстановлений, действующего на один восстанавливаемый узел, равна на два узла — на три узла — . Эти значения и проставлены на рис. 8.5 у стрелок, ведущих влево.

Пользуясь полученным выше общим решением задачи гибели и размножения, имеем (ставя вместо ):

Зададимся конкретными значениями (час). Тогда и

Средняя производительность прибора в установившемся режиме:

<< Предыдущий параграф Следующий параграф >>
Оглавление