ЕГЭ и ОГЭ
Живые анекдоты
Главная > Математика > Исследование операций
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

13. КРИТЕРИЙ, ОСНОВАННЫЙ НА ИЗВЕСТНЫХ ВЕРОЯТНОСТЯХ УСЛОВИЙ. КРИТЕРИИ ВАЛЬДА, ГУРВИЦА, СЭВИДЖА

Наиболее просто решается задача о выборе решения в условиях неопределенности, когда нам хотя и неизвестны условия выполнения операции (состояние природы) но известны их вероятности:

В этом случае в качестве показателя эффективности, который мы стремимся обратить в максимум, естественно взять среднее значение, или математическое ожидание выигрыша, с учетом вероятностей всех возможных условий.

Обозначим это среднее значение для стратегии игрока через

или, короче,

Очевидно, есть не что иное, как взвешенное среднее выигрышей строки, взятых с кесами . В качестве оптимальной стратегии естественно выбрать ту из стратегий для которой величина обращается в максимум.

С помощью такого приема задача о выборе решения в условиях неопределенности превращается в задачу о выборе решения в условиях определенности, только принятое решение является оптимальным не в каждом отдельном случае, а в среднем.

Пример 1. Планируется операция в заранее неизвестных метеорологических условиях; варианты этих условий: Согласно материалам метеосводок за много лет частоты (вероятности) этих вариантов равны соответственно:

Возможные варианты организации операции в различных метеоусловиях приносят различную выгоду. Значения «дохода» для каждого решения в разные условиях приведены в табл. 13.1

Таблица 13.1

В последней строке даны вероятности условий. Средние выигрыши приведены в последнем столбце. Из него видно, что оптимальной стратегией игрока является его стратегия дающая средний выигрыш (отмечен звездочкой).

При выборе оптимальной стратегии в неизвестных условиях с известными вероятностями можно пользоваться не только средним выигрышем

но и средним риском

который, разумеется, нужно обратить не в максимум, а в минимум.

Покажем, что стратегия, максимизирующая средний выигрыш совпадает со стратегией, минимизирующей средний риск Вычислим оба эти показателя и сложим их:

(13.2)

Эта сумма (среднее взвешенное значение максимумов столбцов) для данной матрицы есть величина постоянная; Обозначим ее С:

Тогда

откуда средний риск равен

Очевидно, эта величина обращается в минимум тогда же, когда а, — в максимум, следовательно, стратегия, выбранная из условий минимального среднего риска, совпадает со стратегией, выбранной из условий максимального среднего выигрыша.

Заметим, что в случае, когда известны вероятности состояний природы при решении игры с природой всегда можно обойтись одними чистыми стратегиями, не применяя смешанных. Действительно, если мы будем применять какую-то смешанную стратегию

т. е. стратегию с вероятностью стратегию с вероятностью и т. д., то наш средний выигрыш, осредненный и по условиям (состояниям природы) и по нашим стратегиям, будет:

Это — взвешенное среднее выигрышей соответствующих нашим чистым стратегиям.

Но ясно, что любое среднее не может превосходить максимальной из осредняемых величин:

Поэтому применение смешанной стратегии с любыми вероятностями не может быть выгоднее для игрока, чем применение чистой стратегии .

Вероятности условий (состояний природы) могут быть определены из статистических данных, связанных с многократным выполнением подобных операций или просто с проведением наблюдений над состояниями природы. Например, если железной дороге за данный промежуток времени предстоит выполнить не вполне известный объем перевозок, то данные о распределении условий могут быть взяты из опыта прошлых лет. Если, как в предыдущем примере, успех операции зависит от метеоусловий, данные о них могут быть взяты из статистики метеосводок.

Однако часто встречаются случаи, когда, приступая к выполнению операции, мы не имеем представления о вероятностях состояний природы; все наши сведения сводятся к перечню вариантов состояний, а оценить их вероятности мы не можем. Так, например, вряд ли нам удастся разумно оценить вероятность того, что в течение ближайших k лет будет предложено и реализовано важное техническое изобретение.

Разумеется, в подобных случаях вероятности условий (состояний природы) могут быть оценены субъективно: некоторые из них представляются нам более, а другие — менее правдоподобными. Для того чтобы наши субъективные представления о большей или меньшей «правдоподобности» той или другой гипотезы превратить в численные оценки, могут применяться различные технические приемы. Так, если мы не можем предпочесть ни одной гипотезы, если они все для нас равноправны, то естественно назначить их вероятности равными друг другу:

Это — так называемый «принцип недостаточного основания» Лапласа. Другой часто встречающийся случай — когда мы имеем представление о том, какие условия более вероятны, а какие — менее, т. е. можем расположить имеющиеся гипотезы в порядке убывания их правдоподобности: всего правдоподобнее первая гипотеза (ПО, затем вторая ) менее всего правдоподобна гипотеза (). Однако, насколько одна из них вероятнее другой — мы не знаем. В этом случае можно, например, назначить вероятности гипотез пропорциональными членам убывающей арифметической прогрессии:

или, учитывая, что

Иногда удается, исходя из опыта и здравого смысла, оценить и более тонкие различия между степенями правдоподобия гипотез.

Подобные методы субъективной оценки «вероятности-правдоподобности» разных гипотез о состоянии природы могут иногда помочь при выборе решения. Однако нельзя забывать, что «оптимальное решени выбранное на основе субъективных вероятностей, неизбежно окажется тоже субъективным. Степень субъективности решения можно уменьшить, если вместо вероятностей назначенных произвольно одним лицом, ввести средние из таких вероятностей, назначенных, независимо друг от друга, группой квалифицированных лиц («экспертов»). Метод опроса экспертов вообще широко применяется в современной науке, когда речь идет об оценке неопределенной ситуации (например, в футурологии). Опыт применения подобных методов учит, что зачастую оценки экспертов (принятые независимо одним от другого) оказываются далеко не столь разноречивыми, как это можно было предположить заранее, и вывести из них некоторые предпосылки для принятия разумного решения вполне возможно.

Выше мы осветили вопрос о выборе решения на основе объективно вычисленных или субъективно назначенных вероятностей состояний природы. Этот подход в теории решений — не единственный. Кроме него существуют еще несколько «критериев» или подходов к выбору оптимального решения в условиях неопределенности. Остановимся на некоторых из них.

1. Максиминный критерий Вальда

Согласно этому критерию в качестве оптимальной выбирается та стратегия игрока А, при которой минимальный выигрыш максимален, т. е. стратегия, гарантирующая при любых условиях выигрыш, не меньший, чем максимин:

(13.4)

Если руководствоваться этим критерием, надо всегда ориентироваться на худшие условия и выбирать ту стратегию, Для которой в худших условиях выигрыш максимален. Пользуясь таким критерием в играх с природой, мы как бы ставим взамен этой безличной и незаинтересованной инстанции активного и злонамеренного противника. Очевидно, такой подход может быть продиктован только крайним пессимизмом в оценке обстановки — «всегда надо рассчитывать на худшее!» — но как один из возможных подходов заслуживает рассмотрения.

2. Критерий минимаксного риска Сэвиджа

Этот критерий рекомендует в условиях неопределенности выбирать ту стратегию, при которой величина риска принимает наименьшее значение в самой неблагоприятной ситуации (когда риск максимален):

Сущность этого критерия в том, чтобы любыми путями избежать большого риска при принятии решения.

Критерий Сэвиджа, так же как и критерий Вальда — это критерий крайнего пессимизма, но только пессимизм здесь понимается по-другому: худшим объявляется не минимальный выигрыш, а максимальная потеря выигрыша по сравнению с тем, чего можно было бы достичь в данных условиях (максимальный риск).

3. Критерий пессимизма-оптимизма Гурвица

Этот критерий рекомендует в условиях неопределенности при выборе решения не руководствоваться ни крайним пессимизмом (всегда рассчитывай на худшее!) ни крайним, легкомысленным оптимизмом (все обойдется наилучшим образом!) Критерий Гурвица имеет вид:

(13.6)

где — коэффициент, выбираемый между нулем и единицей.

Проанализируем структуру выражения (13.6). При критерий Гурвица превращается в пессимистический критерий Вальда, а при — в критерий «крайнего оптимизма», рекомендующий выбирать ту стратегию, для которой в наилучших условиях выигрыш максимален. При получается нечто среднее между крайним пессимизмом и крайним оптимизмом (коэффициент и выражает как бы «меру пессимизма» исследователя). Этот коэффициент выбирается из субъективных соображений — чем опаснее ситуация, чем больше мы хотим в ней «подстраховаться», тем ближе к единице выбирается и.

При желании можно построить критерий, аналогичный критерию оптимизма-пессимизма Гурвица исходя не из выигрыша, а из риска, как в критерии Сэвиджа, но мы на этом не будем останавливаться.

Несмотря на то, что выбор критерия, как и выбор параметра в критерии Гурвица, являются субъективным, все же может оказаться полезным просмотреть ситуацию с точки зрения этих критериев. Если рекомендации, вытекающие из различных критериев, совпадают — тем лучше, можно смело выбирать рекомендуемое ими решение. Если же, как это часто бывает, рекомендации противоречат друг другу — всегда имеет смысл задуматься над этим и принять окончательное решение с учетом его сильных и слабых сторон. Анализ матрицы игры с природой под углом зрения разных критериев часто дает лучшее представление о ситуации, о достоинствах и недостатках каждого решения, чем непосредственное рассмотрение матрицы, особенно, когда ее размеры велики.

Пример 2. Рассматривается игра с природой 4X3 с четырьмя стратегиями игрока: и тремя вариантами условий (состояний природы): Матрица выигрышей дана в табл. 13.2.

Таблица 13.2

Найти оптимальное решение (стратегию), пользуясь критериями Вальда, Сэвиджа и критерием Гурвица при

Решение. 1. Критерий Вальда.

В каждой строке матрицы берем наименьший выигрыш (табл. 13.3).

Из величин максимальная (отмечена звездочкой) равна 0,25, следовательно, по критерию Вальда оптимальной является стратегия

2. Критерий Сэвиджа.

Строим матрицу рисков и помещаем в правом добавочном столбце максимальный риск в каждой строке (табл. 13.4).

Минимальным из значений является 0,60 (отмечено звездочкой); следовательно, по критерию Сэвиджа, оптимальной является любая из стратегий

Таблица 13.3

3. Критерий Гурвица

Записываем в правых трех столбцах матрицы (табл. 13 5) «пессимистическую» оценку выигрыша «оптимистическую» а); и их среднее взвешенное по формуле (13.6):

Максимальное значение (отмечено звездочкой) соответствует стратегии Следовательно, по критерию Гурвица с легким перевесом в сторону пессимизма оптимальной стратегией является Таким образом, все три критерия согласно говорят в пользу стратегии которую мы имеем все основания выбрать.

Таблица 13.4

Таблица 13.5

Таблица 13.6

Таблица 13.7

Таблица 13.8

Таблица 13.9

Пример 3. Рассматривается игра против природы 3X4 с матрицей выигрышей, помещенной в табл. 13.6.

Выбрать оптимальную стратегию по критериям Вальда, Сэвиджа и Гурвица при

Решение 1. Критерий Вальда (табл. 13.7).

Оптимальная стратегия

2. Критерий Сэвиджа (табл. 13.8).

Оптимальная стратегия

3. Критерий Гурвйца ) (табл. 13.9).

Оптимальная стратегия

Таким образом, критерии Сэвиджа и Гурвица говорят в пользу стратегии тогда как критерий Вальда рекомендует Если у принимающего решение нет особых оснований становится на точку зрения крайнего пессимизма, можно остановиться на стратегии

В заключение заметим следующее. Все три критерия — Вальда, Сэвиджа и Гурвица — были сформулированы нами для чистых стратегий; но совершенно таким же образом можно сформировать их и для смешанных стратегий. Например, согласно критерию Сэвиджа следует выбирать ту смешанную стратегию

для которой достигается

(минимум берется по всем Найти этот минимакс (или максимин в критерии Вальда) можно обычными методами линейного программирования. Могут быть случаи, когда применение смешанных стратегий при пользовании критериями Вальда, Сэвиджа, Гурвица даст преимущество по сравнению с тем решением, где применяются одни чистые стратегии, однако мы будем рассматривать эти критерии только для чистых стратегий.

Одна из причин этого — в том, что мы хотим избежать сложных вычислений, когда их результат может быть сведен на нет недостатком сведений о ситуации (незнание вероятностей условий). Другая, более важная причина — в том, что основное содержание теории статистических решений (мы коснемся его в следующем параграфе) — это планирование получения и использования дополнительной информации о состоянии природы, которую можно добыть путем эксперимента. Исследования показывают, что в типичных случаях, когда речь идет о получении сколько-нибудь значительного количества дополнительной информации, критерии, не пользующиеся вероятностями состояний (Вальда и др.), становятся практически равносильными критерию, основанному на вероятностях состояний. Но мы знаем, что при пользовании таким критерием применение смешанных стратегий не имеет смысла; стало быть, если мы можем получить сколько-нибудь много дополнительной информации, применение смешанных стратегий теряет смысл (каким бы из критериев выбора решения мы ни пользовались). Если же мы не можем, производя эксперименты, добывать новую информацию, то различные критерии могут давать противоречащие друг другу рекомендации, как мы видели в примере 3.

<< Предыдущий параграф Следующий параграф >>
Оглавление