ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Исследование операций
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

4. МНОГОКАНАЛЬНАЯ СМО С ОТКАЗАМИ

Рассмотрим -канальную СМО с отказами. Будем нумеровать состояния системы по числу занятых каналов (или, что в данном случае то же, по числу заявок, связанных с системой). Состояния будут:

— все каналы свободны,

— занят ровно один канал, остальные свободны,

— заняты ровно k каналов, остальные свободны,

— заняты все каналов.

Граф состояний СМО представлен на рис. 5.3. Разметим граф, т. е. проставим у стрелок интенсивности соответствующих потоков событий.

Рис. 5.3

По стрелкам слева направо систему переводит один и тот же поток — ноток заявок с интенсивностью к. Если система находится в состоянии (занято k каналов) и пришла новая заявка, система переходит (перескакивает) в состояние

Определим интенсивности потоков событий, переводящих систему по стрелкам справа налево.

Пусть система находится в состоянии 5, (занят один канал). Тогда, как только закончится обслуживание заявки, занимающей этот канал, система перейдет в значит, поток событий, переводящий систему по стрелке имеет интенсивность Очевидно, если обслуживанием занято два канала, а не один, поток обслуживание переводящий систему но стрелке будет вдвое интенсивнее если занято k каналов в k раз интенсивнее Проставим соответствующие интенсивности у стрелок, ведущих справа налево.

Из рис. 5.3 видно, что процесс, протекающий в СМО, представляет собой частный случай процесса гибели и размножения, рассмотренного нами в § 8 гл. 4.

Пользуясь общими правилами, можно составить уравнения Колмогорова для вероятностей состояний:

Уравнения (4.1) называются уравнениями Эрланга. Естественными начальными условиями для их решения являются:

(в начальный момент система свободна).

Интегрирование системы уравнений (4.1) в аналитическом виде довольно сложно; на практике такие системы дифференциальных уравнений обычно решаются численно, на АВМ или ЭЦВМ. Такое решение дает нам все вероятности состояний

как функции времени.

Естественно, нас больше всего будут интересовать предел -ные вероятности состояний характеризующие установившийся режим работы СМО (при ). Для нахождения предельных вероятностей воспользуемся уже готовым решением задачи, полученным для схемы гибели и размножения в § 8 гл. 4. Согласно этому решению,

В этих формулах интенсивность потока заявок и интенсивность потока обслуживаний (для одного канала) не фигурируют по отдельности, а входят только своим отношением Обозначим это отношение

и будем называть величину р «приведенной интенсивностью» потока заявок. Физический смысл ее таков: величина представляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

С учетом этого обозначения, формулы (4.2) примут вид:

Формулы (4.3) называются формулами Эрланга. Они выражают предельные вероятности всех состояний системы в зависимости от параметров ( — интенсивность потока чаявок, — интенсивность обслуживания, п — число каналов СМО).

Зная все вероятности состояний

можно найти характеристики эффективности СМО: относительную пропускную способность q, абсолютную пропускную способность А и вероятность отказа .

Действительно, заявка получает отказ, если приходит в момент, когда все каналов заняты. Вероятность этого равна

Вероятность того, что заявка будет принята к обслуживанию (она же относительная пропускная способность q) дополняет Яотк до единицы:

Абсолютная пропускная способность:

Одной из важных характеристик СМО с отказами является среднее число занятых каналов (в данном случае оно совпадает со средним числом заявок, находящихся в системе). Обозначим это среднее число

Величину k можно вычислить непосредственно через вероятности по формуле:

как математическое ожидание дискретной случайной величины, принимающей значения с вероятностями Однако значительно проще выразить среднее число занятых каналов через абсолютную пропускную способность А, которую мы уже знаем. Действительно, А есть не что иное, как среднее число заявок, обслуживаемых в единицу времени-, один занятый канал обслуживает в среднем за единицу времени заявок; среднее число занятых каналов получится делением А на

или, переходя к обозначению

Пример. Повторяются условия примера предыдущего параграфа однако вместо одноканальной СМО рассматривается трехканальная т. е. число линий связи увеличено до трех Найти вероятности состояний, абсолютную и относительную пропускную способности, вероятность отказа и среднее число занятых каналов.

Решение. Приведенная интенсивность потока заявок:

По формулам Эрланга (4 3) получаем:

Вычисляем вероятность отказа:

Относительная и абсолютная пропускные способности равны:

Среднее число занятых каналов:

т. е. при установившемся режиме работы СМО в среднем будет занят один с небольшим канал из трех — остальные два будут простаивать. Этой ценой добывается сравнительно высокий уровень эффективности обслуживания — около 91% всех поступивших вызовов будет обслужено

<< Предыдущий параграф Следующий параграф >>
Оглавление