1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
Макеты страниц
5. ОЦЕНКА ОПЕРАЦИИ ПО НЕСКОЛЬКИМ ПОКАЗАТЕЛЯМВыше мы рассмотрели задачу исследования операций, где требовалось так выбрать решение, чтобы максимизировать (или минимизировать) один-единственный показатель эффективности W. На практике часто встречается случай, когда эффективность операции приходится оценивать не по одному, а сразу по нескольким показателям: Как правило, эффективность больших по объему, сложных операций не может быть исчерпывающим образом охарактеризована с помощью одного показателя; на помощь ему приходится привлекать и другие, дополнительные. Например, при оценке деятельности промышленного предприятия приходится учитывать целый ряд показателей, как то: — прибыль, — полный объем продукции («вал»), — себестоимость и т. д. При анализе боевой операции, помимо основного показателя, характеризующего ее эффективность (например, математическое ожидание причиненного противнику ущерба), приходится учитывать и ряд дополнительных, как то: — собственные потери, — время выполнения операции, — расход боеприпасов и т. д. Такая множественность показателей эффективности, из которых некоторые желательно максимизировать, а другие — минимизировать, характерна для любой сколько-нибудь сложной задачи исследования операций. Возникает вопрос: как же быть? Рис. 1.1 Прежде всего надо подчеркнуть, что выдвинутые требования, вообще говоря, несовместимы. Решение, обращающее в максимум один какой-то показатель В общем случае не существует решения, которое обращало бы в максимум один показатель и одновременно в максимум (или минимум) другой показатель Прежде всего, он позволяет заранее отбросить явно нерациональные варианты решений, уступающие лучшим вариантам по всем показателям. Проиллюстрируем сказанное на примере. Пусть анализируется боевая операция О, оцениваемая по двум показателям: W — вероятность выполнения боевой задачи («эффективность»); S — стоимость израсходованных средств. Очевидно, первый показатель желательно обратить в максимум, а второй в минимум. Предположим для простоты, что предлагается на выбор конечное число — 20 различных вариантов решения; обозначим их Изобразим для наглядности каждый вариант решения в виде точки на плоскости с координатами W и S (рис. 1.1). Рассматривая рисунок, мы видим, что некоторые варианты решения «неконкурентоспособны» и заранее должны быть отброшены. Действительно, те варианты, которые имеют над другими вариантами с той же стоимостью S преимущество по эффективности W, должны лежать на правой границе области возможных вариантов. Те же варианты, которые при равной эффективности обладают меньшей стоимостью, должны лежать на нижней границе области возможных вариантов. Какие же варианты следует предпочесть при оценке эффективности по двум показателям? Очевидно, те, которые лежат одновременно и на правой, и на нижней границе области (см. пунктирную линию на рис. 1.1). Действительно, для каждого из вариантов, не лежащих на этом участке границы, всегда найдется другой вариант, не уступающий ему по эффективности, но зато более дешевый или, наоборот, не уступающий ему по дешевизне, но зато более эффективный. Таким образом, из 20 предварительно выдвинутых вариантов большинство выпадает из соревнования, и нам остается только проанализировать оставшиеся четыре варианта: Аналогичный предварительный просмотр вариантов (хотя и без такой наглядной геометрической интерпретации) может быть произведен и в случае многих показателей: Такая процедура предварительной отбраковки неконкурентоспособных вариантов решения должна всегда предшествовать решению задачи исследования операций с несколькими показателями. Это, хотя и не снимает необходимости компромисса, но существенно уменьшает множество решений, в пределах которого осуществляется выбор. Ввиду того, что комплексная оценка операции сразу по нескольким показателям затруднительна и требует размышлений, на практике часто пытаются искусственно объединить несколько показателей в один обобщенный показатель (или критерий). Нередко в качестве такого обобщенного (составного) критерия берут дробь; в числителе ставят те показатели Например, если речь идет о боевой операции, в числителе ставят такие величины, как «вероятность выполнения боевой задачи» или «потери противника»; в знаменателе — «собственные потери», «расход боеприпасов», «время выполнения операции» и т. п. Общим недостатком «составных критериев» типа (5.1) является, то, что недостаток эффективности по одному показателю всегда можно скомпенсировать за счет другого (например, малую вероятность выполнения боевой задачи — за счет малого расхода боеприпасов, и т. п.). Критерии подобного рода напоминают в шутку предложенный Львом Толстым «критерий оценки человека» в виде дроби, где числитель — истинные достоинства человека, а знаменатель — его мнение о себе. Несостоятельность такого критерия очевидна: если принять его всерьез, то человек, почти без достоинств, но зато совсем без самомнения, будет иметь бесконечно большую ценность! Часто «составные критерии» предлагаются не в виде дроби, а в виде «взвешенной суммы» отдельных показателей эффективности: где Нетрудно убедиться, что составной критерий вида (5.2) по существу ничем не отличается от критерия вида (5.1) и обладает теми же недостатками (возможность взаимной компенсации разнородных показателей). Поэтому некритическое пользование любого вида «составными» критериями чревато опасностями и может привести к неправильным рекомендациям. Однако, в некоторых случаях, когда «веса» не выбираются произвольно, а подбираются так, чтобы составной критерий наилучшим образом выполнял свою функцию, удается получить с его помощью некоторые результаты ограниченной ценности. В некоторых случаях задачу с несколькими показателями удается свести к задаче с одним-единственным показателем, если выделить только один (главный) показатель эффективности и стремиться его обратить в максимум, а на остальные, вспомогательные показатели Эти ограничения, разумеется, войдут в комплекс заданных условий Например, при оптимизации плана работы промышленного предприятия можно потребовать, чтобы прибыль была максимальна, план по ассортименту — выполнен, а себестоимость продукции — не выше заданной. При планировании бомбардировочного налета можно потребовать, чтобы нанесенный противнику ущерб был максимален, но при этом собственные потери и стоимость операции не выходили за известные пределы. При такой постановке задачи все показатели эффективности, кроме одного, главного, переводятся в разряд заданных условий операции. Варианты решения, не укладывающиеся в заданные границы, сразу же отбрасываются, как неконкурентоспособные. Полученные рекомендации, очевидно, будут зависеть от того, как выбраны ограничения для вспомогательных показателей. Чтобы определить, насколько это влияет на окончательные рекомендации по выбору решения, полезно проварьировать ограничения в разумных пределах. Наконец, возможен еще один путь построения компромиссного решения, который можно назвать «методом последовательных уступок». Предположим, что показатели эффективности расположены в порядке убывающей важности: сначала основной Такой способ построения компромиссного решения хорош тем, что здесь сразу видно, ценой какой «уступки» в одном показателе приобретается выигрыш в другом. Заметим, что свобода выбора решения, приобретаемая ценой даже незначительных «уступок», может оказаться существенной, так как в районе максимума обычно эффективность решения меняется очень слабо. Так или иначе, при любом способе формализации, задача количественного обоснования решения по нескольким показателям остается не до конца определенной, и окончательный выбор решения определяется волевым актом «командира» (так мы условно будем называть ответственное за выбор лицо). Дело исследователя — предоставить в распоряжение командира достаточное количество данных, позволяю.
|
Оглавление
|