ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Исследование операций
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

10. НАХОЖДЕНИЕ ОПОРНОГО ПЛАНА

Решение транспортной задачи, как и всякой задачи линейного программирования, начинается с нахождения опорного решения, или, как мы будем говорить, опорного плана. В отличие от общего случая ОЗЛП с произвольными ограничениями и минимизируемой функцией, решение ТЗ всегда существует. Действительно, из чисто физических соображений ясно, что хоть какой-то допустимый план существовать должен. Среди допустимых планов непременно имеется оптимальный (может быть, не один), потому что линейная функция L — стоимость перевозок заведомо неотрицательна (ограничена снизу нулем). В данном параграфе мы покажем, как построить опорный план. Для этого существуют различные способы, из которых мы остановимся на простейшем, так называемом «способе северо-западного угла». Пояснить его проще всего будет на конкретном примере.

Пример 1. Условия ТЗ заданы транспортной таблицей (см. табл. 10.1).

Требуется найти опорное решение ТЗ (построить опорный план).

Решение. Перепишем табл. 10.1 и будем заполнять ее перевозками постепенно, начиная с левой верхней ячейки (1,1) («северо-западного угла» таблицы). Будем рассуждать при этом следующим образом. Пункт подал заявку на 18 единиц груза. Удовлетворим эту заявку за счет запаса 48, имеющегося в пункте и запишем перевозку 18 в клетке (1,1). После этого заявка пункта й, удовлетворена, а в пункте осталось еще 30 единиц груза. Удовлетворим за счет них заявку пункта единиц), запишем 27 в клетке (1,2); оставшиеся 3 единицы пункта назначим пункту . В составе заявки пункта остались неудовлетворенными 39 единиц.

Таблица 10.1

Из них 30 покроем за счет пункта , чем его запас будет исчерпан, и еще 9 возьмем из пункта . Из оставшихся 18 единиц пункта выделим пункту оставшиеся 6 единиц назначим пункту что вместе со всеми 20 единицами пункта покроет его заявку (см. табл. 10.2).

На этом распределение запасов закончено: каждый пункт назначения получил груз согласно своей заявке. Это выражается в том, что сумма перевозок в каждой строке равна соответствующему запасу, а в столбце — заявке.

Таким образом, нами сразу же составлен план перевозок, удовлетворяющий балансовым условиям. Полученное решение является не только допустимым, но и опорным решением транспортной задачи.

Таблица 10.2

Клетки таблицы, в которых стоят ненулевые перевозки, являются базисными, их число удовлетворяет условию Остальные клетки — свободные (пустые), в них стоят ненулевые перевозки, их число равно Значит, наш план — опорный и поставленная задача построения опорного плана решена.

Возникает вопрос: а является ли этот план оптимальным по стоимости? Разумеется, нет! Ведь при его построении мы совсем не учитывали стоимостей перевозок Естественно, план не получился оптимальным. Действительно, стоимость этого плана, которая найдется, если умножить каждую перевозку на соответствующую стоимость, равна .

Таблица 10.3

Попробуем улучшить этот план, перенеся, например, 18 единиц из клетки (1,1) в клетку (2,1) и, чтобы не нарушить баланса, перенеся те же 18 единиц из клетки (2,3) в клетку (1,3). Получим новый план, приведенный в табл. 10.3.

Нетрудно убедиться, что стоимость нового плана равна т. е. на 126 единиц меньше стоимости плана, приведенного в табл. 10.3.

Таким образом, за счет циклической перестановки 18 единиц груза из одних клеток в другие нам удалось понизить стоимость плана. На этом способе уменьшения стоимости в дальнейшем и будет основан алгоритм оптимизации плана перевозок.

Остановимся на одной особенности плана перевозок, которая может встретиться как при построении опорного плана, так и при его улучшении. Речь идет о так называемом «вырожденном» плане, в котором некоторые из базисных перевозок оказываются равными нулю. Рассмотрим конкретный пример возникновения вырожденного плана.

Пример 2. Дана транспортная таблица (без стоимостей перевозок, так как речь идет только о построении опорного плана) — см. табл. 10.4.

Таблица 10.4

Таблица 10.5

Таблица 10.6

Составить опорный план перевозок.

Решение. Применяя способ северо-западного угла, получим табл. 10.5.

Опорный план составлен. Особенностью его является то, что в нем только шесть, а не восемь отличных от нуля перевозок. Значит, некоторые из базисных перевозок, которых должно быть оказались равными нулю.

Нетрудно заметить, отчего это произошло: при распределении запасов по пунктам назначения в некоторых случаях остатки оказывались равными нулю и в соответствующую клетку не попадали.

Такие случаи «вырождения» могут возникать не только при составлении опорного плана, но и при его преобразовании, оптимизации.

В дальнейшем нам удобно будет всегда иметь в транспортной таблице базисных клеток, хотя в некоторых из них, может быть, будут стоять и нулевые значения перевозок. Для этого можно ничтожно мало изменить запасы или заявки, так чтобы общий баланс не нарушился, а лишние, «промежуточные» балансы уничтожились. Достаточно в нужных местах изменить запасы или заявки, например, на величину , а после нахождения оптимального решения положить

Покажем, как перейти от вырожденного плана к невырожденному на примере табл. 10.5. Изменим слегка запасы в первой строке и положим их равными . Кроме того, в третьей строке проставим запасы . Чтобы «свести баланс», в четвертой строке ставим запасы 20 — 2е (см. табл. 10.6). Для этой таблицы строим опорный план способом северо-западного угла.

В табл. 10.6 уже содержится столько базисных переменных, сколько требуется: . В дальнейшем, после оптимизации плана, можно будет положить .

<< Предыдущий параграф Следующий параграф >>
Оглавление