1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
Макеты страниц
5. ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ1. ЗАДАЧИ ТЕОРИИ МАССОВОГО ОБСЛУЖИВАНИЯПри исследовании операций очень часто приходится сталкиваться с анализом работы своеобразных систем, называемых системами массового обслуживания (СМО). Примерами таких систем могут служить: телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, магазины, парикмахерские и т. п. Каждая СМО состоит из какого-то числа обслуживающих единиц, которые мы будем называть каналами обслуживания. В качестве «каналов» могут фигурировать: линии связи, рабочие точки, приборы, железнодорожные пути, лифты, автомашины и т. д. Системы массового обслуживания могут быть одноканальными или многоканальными. Каждая СМО предназначена для обслуживания (выполнения) какого-то потока заявок (или «требований»), поступающих на СМО в какие-то, вообще говоря, случайные моменты времени. Обслуживание поступившей заявки продолжается некоторое (вообще говоря, случайное) время, после чего канал освобождается и готов к принятию следующей заявки. Случайный характер потока заявок приводит к тому, что в какие-то промежутки времени на входе СМО скапливается излишне большое число заявок (они либо образуют очередь, либо покидают СМО необслуженными); в другие же периоды СМО будет работать с недогрузкой или вообще простаивать. Каждая система массового обслуживания, в зависимости от числа каналов и их производительности, а также от характера потока заявок, обладает какой-то пропускной способностью, позволяющей ей более или менее успешно справляться с потоком заявок. Предмет теории массового обслуживания — установление зависимости между характером потока заявок, числом каналов, их производительностью, правилами работы СМО и успешностью (эффективностью) обслуживания. В качестве характеристик эффективности обслуживания, в зависимости от условий задачи и целей исследования, могут применяться различные величины и функции, например: — среднее количество заявок, которое может обслужить СМО в единицу времени; — средний процент заявок, получающих отказ и покидающих СМО необслуженными; — Вероятность того, что поступившая заявка немедленно будет принята к обслуживанию; — среднее время ожидания в очереди; — закон распределения времени ожидания; — среднее количество заявок, находящихся в очереди; — закон распределения числа заявок в очереди; — средний доход, приносимый СМО в единицу времени и т. д. Случайный характер потока заявок, а в общем случае и длительности обслуживания приводит к тому, что в системе массового обслуживания будет происходить какой-то случайный процесс. Чтобы дать рекомендации по рациональной организации этого процесса и предъявить разумные требования к СМО, необходимо изучить случайный процесс, протекающий в системе, описать его математически. Этим и занимается теория массового обслуживания. Заметим, что за последние годы область применения математических методов теории массового обслуживания непрерывно расширяется и все больше выходит за пределы задач, связанных с «обслуживающими организациями» в буквальном смысле слова. Как своеобразные системы массового обслуживания могут рассматриваться: электронные цифровые вычислительные машины; системы сбора и обработки информации; автоматизированные производственные цехи, поточные линии; транспортные системы; системы противовоздушной обороны и т. п. Близкими к задачам теории массового обслуживания являются многие задачи, возникающие при анализе надежности технических устройств. Математический анализ работы СМО очень облегчается, если случайный процесс, протекающий в системе, является марковским. Тогда удается сравнительно просто описать работу СМО с помощью аппарата обыкновенных дифференциальных (в предельном случае — линейных алгебраических) уравнений и выразить в явном виде основные характеристики эффективности обслуживания через параметры СМО и потока заявок. Мы знаем, что для того, чтобы процесс, протекающий в системе, был марковским, нужно, чтобы все потоки событий, переводящие систему из состояния в состояние, были пуассоновскими (потоками без последействия). Для СМО потоки событий — это потоки заявок, потоки «обслуживанию заявок и т. д. Если эти потоки не являются пуассоновскими, математическое описание процессов, происходящих в СМО, становится несравненно более сложным и требует более громоздкого аппарата, доведение которого до явных, аналитических формул удается только в редких, простейших случаях. Однако, все же аппарат «марковской» теории массового обслуживания может пригодиться и в том случае, когда процесс, протекающий в СМО, отличен от марковского с его помощью характеристики эффективности СМО могут быть оценены приближенно. Следует заметить, что чем сложнее СМО, чем больше в ней каналов обслуживания, тем точнее оказываются приближенные формулы, полученные с помощью марковской теории. Следует также заметить, что в ряде случаев для принятия обоснованных решений по управлению работой СМО вовсе и не требуется точного знания всех ее характеристик — зачастую достаточно и приближенного, ориентировочного. В настоящей главе будут изложены элементы теории массового обслуживания, главным образом в той простейшей форме, которую они приобретают в рамках марковской теории. Для более подробного ознакомления с теорией массового обслуживания в ее современной, развитой форме, читатель может обратиться к специальным монографиям, например, [14], [12], [20].
|
Оглавление
|