ЕГЭ и ОГЭ
Живые анекдоты
Главная > Математика > Исследование операций
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

4. НИЖНЯЯ И ВЕРХНЯЯ ЦЕНА ИГРЫ. ПРИНЦИП МИНИМАКСА

Рассмотрим игру с матрицей

Буквой i будем обозначать номер нашей стратегии, буквой — номер стратегии противника.

Отбросим вопрос о смешанных стратегиях и будем рассматривать пока только чистые. Поставим задачу: определить наилучшую среди наших стратегий Проанализируем последовательно каждую из них, начиная с и кончая Выбирая мы должны рассчитывать, что противник ответит на нее той из стратегий для которой наш выигрыш минимален. Найдем минимальное из чисел строке и обозначим его

(знак обозначает минимальное значение данного параметра при всех возможных

Выпишем числа (минимумы строк) рядом с матрицей справа в виде добавочного столбца:

Выбирая какую-то стратегию , мы должны рассчитывать на то, что в результате разумных действий противника мы выиграем только Естественно, действуя наиболее осторожно (т. е. избегая всякого риска), мы должны предпочесть другим ту стратегию, для которой число максимально. Обозначим это максимальное значение

или. принимая во внимание формулу (4.1),

Величина а называется нижней ценой игры, иначе — максиминным выигрышем или максимином. Та стратегия игрока А, которая соответствует максимину а, называется максиминной стратегией.

Очевидно, если мы будем придерживаться максиминной стратегии, то нам при любом поведении противника гарантирован выигрыш, во всяком случае, не меньший а. Поэтому величина а и называется «нижней ценой игры». Это — тот гарантированный минимум, который мы можем себе обспечить, придерживаясь своей наиболее осторожной («перестраховочной») стратегии.

Очевидно, аналогичное рассуждение можно провести и за противника В. Он (аинтересован в том, чтобы обратить наш выигрыш в минимум; значит, он должен просмотреть все свои стратегии, выделяя для каждой из них максимальное значение выигрыша. Выпишем внизу матрицы (4,2) максимальные значения по столбцам:

и найдем их них минимальное:

или

(4.4)

Величина называется верхней ценой игры, иначе минимаксным выигрышем или минимаксом. Соответствующая выигрышу стратегия противника называется его минимаксной стратегией. Придерживаясь своей наиболее осторожной минимаксной стратегии, противник гарантирован, что в любом случае он проиграет не больше р.

Принцип осторожности, диктующий игрокам выбор соответствующих стратегий (максиминной и минимаксной), является в теории игр основным и называется принципом минимакса. Он вытекает из предположения о разумности каждого игрока, стремящегося достигнуть цели, противоположной цели противника. Наиболее «осторожные» максиминную и минимаксную стратегии часто обозначают общим термином «минимаксные стратегии».

Определим нижнюю и верхнюю цены игры, а также минимаксные стратегии, для трех примеров, рассмотренных в предыдущем параграфе.

Пример 1. (Игра «поиск»). Определяя минимумы строк и максимумы столбцов получим

Так как величины , постоянны и равны соответственно —1 и нижняя и верхняя цены игры также равны —1 и

Любая стратегия игрока А является его максиминной, а игрока В — его минимаксной стратегией. Вывод тривиален: придерживаясь любой из своих стратегий, игрок А может гарантировать, что он проиграет не более 1 руб.; то же может гарантировать и игрок В при любой своей стратегии.

Пример 2. (Игра три пальца»). Выписывая минимумы строк и максимумы столбцов, найдем нижнюю цену игры и верхнюю (выделены в таблице жирным шрифтом). Наша максиминная стратегия (применяя ее систематически, мы гарантируем, что выиграем не меньше —3, т. е. проиграем не больше 3).

Минимаксная стратегия противника — любая из стратегий применяя их систематически, он может гарантировать, что не отдаст более 4. Если мы отступим от своей максиминной стратегии (например, выберем А 2), то противник может нас «наказать» за это, применив и сведя наш выигрыш равным образом и отступление противника от его минимаксной стратегии может быть «наказано» увеличением его проигрыша до 6.

Обратим внимание на то, что минимаксные стратегии в данном случае не устойчивы. Действительно, пусть, например, противник выбрал одну из своих минимаксных стратегий и придерживается ее. Узнав об этом, мы перейдем к стратегии и будем выигрывать 4. На это противник ответит стратегией и будет выигрывать 5; на это мы, в свою очередь, ответим стратегией и будем выигрывать 4, и т. д. Таким образом, положение, при котором оба игрока пользуются своими минимаксными стратегиями, является неустойчивым и может быть нарушено поступившими сведениями о стратегии, которую применяет противная сторона. Однако такая неустойчивость наблюдается не всегда; в этом мы убедимся на следующем примере.

Пример 3. (Игра «вооружение и самолет»). Определяем минимумы строк и максимумы столбцов:

В данном случае нижняя цена игры равна верхней:

Минимаксные стратегии являются устойчивыми: если один из игроков придерживается своей минимаксной (максиминной) стратегии, то другой игрок никак не может улучшить свое положение, отступая от своей.

Таким образом, мы видим, что существуют игры, для которых нижняя цена равна верхней:

Эти игры занимают особое место в теории игр и называются играми с седловой точкой. В матрице такой игры существует элемент, являющийся одновременно минимальным в своей строке и максимальным в своем столбце; такой элемент называется седловой точкой» (по аналогии с седловой точкой на поверхности, где достигается минимум по одной координате и максимум по другой).

Общее значение нижней и верхней цены игры

называется чистой ценой игры.

Седловой точке соответствует пара минимаксных стратегий, эти стратегии называются оптимальными, а их совокупность — решением игры. Решение игры обладает следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной (такое отклонение либо оставит положение неизменным, либо ухудшит его).

Действительно, пусть в игре с седловой точкой игрок А придерживается своей оптимальной стратегии, а игрок В — своей. До тех пор, пока это так — выигрыш остается постоянным и равным цене игры v. Теперь допустим, что В допустил отклонение от своей оптимальной стратегии. Так как элемент v является минимальным в своей строке, такое отклонение не может быть выгодным для В; равным образом и для А, если В придерживается своей оптимальной стратегии, не может быть выгодно отклонение от своей.

Мы видим, что для игры с седловой точкой минимаксные стратегии обладают устойчивостью. Пара оптимальных стратегий в игре с седловой точкой является как бы положением равновесия: отклонение от оптимальной стратегии вызывает такое изменение выигрыша, которое невыгодно для отклоняющегося игрока и вынуждает его вернуться к своей оптимальной стратегии.

Чистая цена игры v в игре с седловой точкой является тем значением выигрыша, которое в игре против разумного противника игрок А не может увеличить, а игрок В — уменьшить.

Заметим, что в платежной матрице может быть не одна седловая точка, а несколько.

Например, в матрице имеется шесть седловых точек, с общим значением выигрыша и соответствующими парами оптимальных стратегий: Нетрудно доказать (мы этого делать не будем), что если в матрице игры несколько седловых точек, то все они дают одно и то же значение выигрыша.

Рис. 9.1

Пример. Сторона А — средства ПВО — обороняет от воздушного налета участок территории, располагая двумя орудиями № 1 и № 2, зоны действия которых не перекрываются (рис. 9.1). Каждое орудие может обстрелять только самолет, проходящий через его зону действия, но для этого оно должно заранее (до входа цели в зону) следить за ней и вырабатывать прицельные данные Если цель обстреляна, она поражается с вероятностью Сторона В располагает двумя самолетами, каждый из которых может быть направлен в любую зону В момент, когда сторона А осуществляет целераспределение (назначает, какому орудию по какой цели стрелять), движение самолета-цели № 1 направлено в зону действия орудия № 1, а цели № 2 — в зону действия орудия № 2. Однако после принятия решения по целераспределению каждая цель может сманеврировать, применив «обманный маневр» (см. пунктирные стрелки на рис 9.1).

Задача стороны А — обратить в максимум, а стороны В — обратить в минимум число пораженных целей Найти решение игры (оптимальные стратегии сторон)

Решение. У стороны А (средства ПВО) четыре возможные стратегии — каждое орудие следит за направляющейся в его зону целью,

— орудия следят за целями «крест-накрест» (каждое — за целью направляющейся к соседу),

— оба орудия следят за целью № 1,

— оба орудия следят за целью № 2 У стороны В (самолеты-цели) тоже четыре стратегии:

- обе целн не меняют направления,

— обе цели применяют обманный маневр.

— первая цель применяет обманный маневр, а вторая нет,

— вторая цель применяет обманный маневр, а первая нет.

Получается игра 4X4, матрица которой дана в таблице:

Находя минимумы строк и максимумы столбцов, убеждаемся, что нижняя цена игры равна верхней цене игры: значит, игра имеет седловую точку и решение в чистых стратегиях, приводящее к чистой цене игры . В данном случае седловых точек не одна, а целых четыре Каждой из них со ответствует пара оптимальных стратегий, дающая решение игры Цена игры означает, что при оптимальном поведении сторон самолеты будут неизбежно терять один самолет, и никакие ухищрения не помогут им терять меньше, а средствам ПВО — сбить больше одного самолета Достигается это состояние равновесия, когда обе стороны пользуются своими оптимальными стратегиями: орудия следят оба за одним и тем же самолетом (любым), а самолеты направляются после целераспределения в одну и ту же зону (любую)

Класс игр, имеющих седловую точку, весьма интересен как с теоретической, так и с практической точки зрения. К нему принадлежат, в частности, все так называемые «игры с полной информацией».

Игрой с полной информацией называется такая игра, в которой каждый игрок при каждом личном ходе знает результаты всех предыдущих ходов — как личных, так и случайных. Примерами игр с полной информацией могут служить: шашки, шахматы, известная игра в «крестики и нолики» и др.

В теории игр доказывается, что каждая игра с полной информацией имеет седловую точку и следовательно, решение в чистых стратегиях. Другими словами, в каждой игре с полной информацией существует пара оптимальных стратегий той и другой стороны, дающая устойчивый выигрыш, равный чистой цене игры. Если игра с полной информацией состоит только из личных ходов, то при применении каждой стороной своей оптимальной стратегии игра должна кончаться всегда вполне определенным исходом, равным цене игры

В качестве примера приведем следующую игру с полной информацией. Два игрока поочередно кладут одинаковые монеты на круглый стол, выбирая произвольно положение монеты (взаимное перекрытие монет не допускается). Выигрывает тот, кто положит последнюю монету (когда места для других уже не останется). Нетрудно убедиться, что исход этой игры предрешен, и существует определенная стратегия, обеспечивающая достоверный выигрыш тому из игроков, кто кладет монету первым. А именно, он должен первый раз положить монету в центр стола, а далее на каждый ход противника отвечать симметричным ходом. Очевидно, как бы ни вел себя противник, ему не избежать проигрыша. Поэтому игра имеет смысл только для лиц, не знающих ее решения. Точно так же дело обстоит с шахматами и другими играми с полной информацией; любая из этих игр обладает седловой точкой и, значит, решением, указывающим каждому игроку его оптимальную стратегию, так что игра имеет смысл только до тех пор, пока неизвестно решение. Решение шахматной игры не найдено (и в обозримом будущем вряд ли будет найдено) только потому, что число стратегий (комбинаций ходов) в шахматах слишком велико, чтобы можно было построить платежную матрицу и найти в ней седловую точку.

<< Предыдущий параграф Следующий параграф >>
Оглавление