ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Исследование операций
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

9. СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ СО «ВЗАИМОПОМОЩЬЮ» МЕЖДУ КАНАЛАМИ

До сих пор мы рассматривали только такие СМО, в которых каждая заявка может обслуживаться только одним каналом; незанятый каналы не могут «помогать» занятому в обслуживании.

Вообще, это не всегда бывает так: встречаются системы массового обслуживания, где одна и та же заявка может одновременно обслуживаться двумя и более каналами. Например, один и тот же вышедший из строя станок могут обслуживать два рабочих сразу. Такая «взаимопомощь» между каналами может иметь место как в открытых, так и в замкнутых СМО.

Рис. 5.11

Рис. 5.12

При рассмотрении СМО со взаимопомощью между каналами необходимо учитывать два фактора:

1. Насколько убыстряется обслуживание заявки, когда над ним работает не один, а сразу несколько каналов?

2. Какова «дисциплина взаимопомощи», т. е. когда и как несколько каналов берут на себя обслуживание одной и той же заявки?

Рассмотрим сначала первый вопрос. Естественно предположить, что если над обслуживанием заявки работает не один канал, а несколько каналов, интенсивность потока обслуживаний не будет убывать с увеличением k, т. е. будет представлять собой некоторую неубывающую функцию числа k работающих каналов. Обозначим эту функцию Возможный вид функции показан на рис. 5.11.

Очевидно, что неограниченное увеличение числа одновременно работающих каналов не всегда ведет к пропорциональному увеличению скорости обслуживания; естественнее предположить, что при некотором критическом значении дальнейшее увеличение числа занятых каналов уже не повышает интенсивности обслуживания.

Для того, чтобы проанализировать работу СМО со взаимопомощью между каналами, нужно, прежде всего, задать вид функции

Самым простым для исследования будет случай, когда функция возрастает пропорционально k при а при остается постоянной и равной (см. рис. 5.12). Если при этом общее число каналов , которые могут помогать друг другу, не превосходит

то можно считать интенсивность обслуживания заявки несколькими каналами пропорциональной числу каналов.

Остановимся теперь на втором вопросе: дисциплине взаимопомощи. Самый простой случай этой дисциплины мы обозначим условно «все как один». Это означает, что при появлении одной заявки ее начинают обслуживать все каналов сразу и остаются занятыми, пока не закончится обслуживание этой заявки; затем все каналы переключаются на обслуживание другой заявки (если она есть) или ждут ее появления, если ее нет, и т. д. Очевидно, в этом случае все каналов работают как один, СМО становится одноканальной, но с более высокой интенсивностью обслуживания.

Возникает вопрос: выгодно или невыгодно вводить такую взаимопомощь между каналами? Ответ на этот вопрос зависит от того, какова интенсивность потока заявок, каков вид функции каков тип СМО (с отказами, с очередью), какая величина выбирается в качестве характеристики эффективности обслуживания.

Пример 1. Имеется трехканальная СМО с отказами: интенсивность потока заявок (заявки в минуту), среднее время обслуживания одноц заявки одним каналом (мин), функция Спрашивается, выгодно ли с точки зрения пропускной способности СМО вводить взаимопомощь между каналами по типу «все как один»? Выгодно ли это с точки зрения уменьшения среднего времени пребывания заявки в системе?

Решение, а. Без взаимопомощи,

По формулам Эрланга (см. § 4) имеем:

Относительная пропускная способность СМО;

Абсолютная пропускная способность:

Среднее время пребывания заявки в СМО найдется, как вероятность того, что заявка будет принята к обслуживанию, умноженная на среднее время обслуживания:

Гсист (мин).

Не нужно забывать, что это среднее время относится ко всем заявкам — как обслуженным, так и необслуженным Нас же может интересовать среднее время, которое пробудет в системе обслуженная заявка. Это время равно:

6. Со взаимопомощью.

Среднее время пребывания заявки в СМО:

Среднее время пребывания обслуженной заявки в СМО:

Таким образом, при наличии взаимопомощи «все как один» пропускная способность СМО заметно уменьшилась. Это объясняется увеличением вероятности отказа: за то время, пока все каналы заняты обслуживанием одной заявки, могут прийти другие заявки, и, естественно, получить отказ. Что касается среднего времени пребывания заявки в СМО, то оно, как и следовало ожидать, уменьшилось. Если, по каким-то соображениям, мы стремимся ко всемерному уменьшению времени, которое заявка проводит в СМО (например, если пребывание в СМО опасно для заявки), может оказаться, что, несмотря на уменьшение пропускной способности, все же будет выгодно объединить три канала в один.

Рассмотрим теперь влияние взаимопомощи типа «все как один» на работу СМО с ожиданием. Возьмем для простоты только случай неограниченной очереди. Естественно, влияния взаимопомощи на пропускную способность СМО в этом случае не будет, так как при любых условиях обслужены будут все пришедшие заявки. Возникает вопрос о влиянии взаимопомощи на характеристики ожидания: среднюю длину очереди, среднее время ожидания, среднее время пребывания в СМО.

В силу формул (6.13), (6.14) § 6 для обслуживания без взаимопомощи среднее число заявок в очереди будет

среднее время ожидания:

а среднее время пребывания в системе:

где

Если же применяется взаимопомощь типа «все как один», то система будет работать как одноканальная с параметрами

и ее характеристики определятся формулами (5.14), (5.15) § 5:

Пример 2. Имеется трехканальная СМО с неограниченной очередью; интенсивность потока заявок (заявки в мин.), среднее время обслуживания Функция Выгодно имея в виду:

— среднюю длину очереди,

— среднее время ожидания обслуживания,

— среднее время пребывания заявки в СМО

вводить взаимопомощь между каналами типа «все как один»?

Решение, а. Без взаимопомощи.

По формулам (9.1) — (9.4) имеем

(3—2)

б. Со взаимопомощью

По формулам (9.5) — (9.7) находим;

Таким образом, средняя длина очереди и среднее время ожидания в очереди в случае взаимопомощи, больше, но среднее время пребывания заявки в системе — меньше.

Из рассмотренных примеров видно, что взаимопомощь между к? налами типа «все как один», как правило, не способствует повышению эффективности обслуживания: время пребывания заявки в СМО уменьшается, но зато ухудшаются другие характеристики обслуживания.

Поэтому желательно изменить дисциплину обслуживания так, чтобы взаимопомощь между каналами не мешала принимать к обслуживанию новые заявки, если они появятся за время, пока все каналы заняты.

Назйвем условно «равномерной взаимопомощью» следующий тип взаимопомощи. Если заявка приходит в момент, когда все каналы свободны, то все каналов принимаются за ее обслуживание; если, в момент обслуживания заявки, приходит еще одна, часть каналов переключается на ее обслуживание; если, пока обслуживаются эти две заявки, приходит еще одна, часть каналов переключается на ее обслуживание и т. д., до тех пор, пока не окажутся занятыми все каналов; если это так, вновь пришедшая заявка получает отказ (в СМО с отказами) или становится в очередь (в СМО с ожиданием).

При такой дисциплине взаимопомощи заявка получает отказ или становится в очередь только тогда, когда нет возможности ее обслужить. Что касается «простоя» каналов, то он в этих условиях минимален: если в системе имеется хотя бы одна заявка, все каналы работают.

Выше мы упомянули, что при появлении новой заявки часть занятых каналов освобождается и переключается на обслуживание вновь прибывшей заявки. Какая часть? Это зависит от вида функции Если она имеет вид линейной зависимости, как показано на рис. 5.12, и то все равно, какую часть каналов выделить на обслуживание вновь поступившей заявки, лишь бы все каналы были заняты (тогда суммарная интенсивность обслуживаний при любом распределении каналов по заявкам будет равна ). Можно доказать, что если кривая выпукла кверху, как показано на рис. 5.11, то нужно распределять каналы по заявкам как можно более равномерно.

Рассмотрим работу -канальной СМО при «равномерной» взаимопомощи между каналами.

<< Предыдущий параграф Следующий параграф >>
Оглавление