1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
Макеты страниц
9. ЗАДАЧИ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ, НЕ СВЯЗАННЫЕ СО ВРЕМЕНЕМДо сих пор мы рассматривали только такие задачи динамического программирования, где планируемая операция развивалась во времени и распадалась на ряд шагов (этапов), следующих друг за другом в естественном, временном порядке — от первого шага к последнему. Вообще, это не обязательно: разбиение на шаги или «этапирование» в задачах динамического программирования может быть произведено не по времени, а по любому другому признаку, например, по порядковому номеру того Или другого объекта. В качестве примера рассмотрим следующую задачу. Пусть имеется группа предприятий которые выпускают одну и ту же продукцию. В нашем распоряжении какой-то запас средств Предположим, что каждое предприятие может освоить только ограниченное количество средств, и представляют собой максимальные суммы, которые могут освоить соответственно предприятия (9.1). Если в предприятие Требуется так распределить имеющиеся средства между предприятиями, чтобы суммарный объем W дополнительной продукции был максимальным. Управление средствами состоит в том, что предприятиям выделяются соответственно средства: не превосходящие в сумме имеющегося капитала и требуется найти оптимальное управление, при котором где Поставленная задача легко решается методом динамического программирования; «этапом» процесса распределения средств является выделение средств i-му предприятию. Будем нумеровать этапы (шаги) в порядке номеров предприятий (т. е. в произвольном порядке). Предположим, что средства предприятиям Очевидно, оптимальное управление на последнем шаге состоит в том, чтобы выделить При таком управлении максимальный доход на последнем шаге будет Перейдем к планированию предпоследнего шага — выделению средств на при котором доход на Основное функциональное уравнение динамического программирования будет а вся процедура условной и безусловной оптимизации ничем не отличается от той задачи о распределении ресурсов по неоднородным этапам с резервированием, которую мы рассматривали выше, в § 6. Таким образом, метод динамического программирования, который первоначально представлялся нам как специфический метод оптимизации процессов, развивающихся во времени, имеет гораздо более широкое поле применений. Пример. Предстоит спроектировать многоступенчатую космическую ракету в пределах определенного стартового веса G Кабина космонавта имеет заданный вес где Каждая ступень имеет какой-то запас горючего. После израсходования горючего отработанная ступень сбрасывается и вступает в действие следующая. Скорость ракеты в конце активного участка W складывается из Требуется найти такое распределение веса Решение. Рассмотрим Так как приращение скорости, согласно формуле (9.6), зависит от двух аргументов — веса ступени и пассивного веса Р, определим этот пассивный вес Очевидно, он равен Под влиянием управления Основное функциональное уравнение будет иметь вид: Оптимальное управление на Оптимальное управление на Далее процедура динамического программирования разворачивается обычным порядком. В результате находится оптимальный набор весов ступеней придающий последней ступени (кабине) максимальную скорость:
|
Оглавление
|