1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
Макеты страниц
3. УЧЕТ ПОПОЛНЕНИЯ ЧИСЛЕННОСТЕЙ СОСТОЯНИЙДо сих пор мы применяли метод динамики средних к решению только гаких задач, где система была замкнутой, т. е. количество элементов Рассмотрим в качестве примера систему S, состоящую из N однородных элементов. Граф состояний элемента показан на рис. 6.12. Интенсивности в общем случае зависят от численностей состояний Рис. 6.12 Рис. 6.13 Если пополнения состава численностей состояний в ходе процесса не происходит, то уравнения динамики средних будут: причем любое из этих уравнений может быть отброшено, и соответствующая переменная выражена из условия: Теперь предположим, что контингент элементов, находящихся в одном из состояний (например, При наличии пополнения первое уравнение системы (3.1) изменится; в правой части его появится слагаемое, равное пополнению а остальные уравнения останутся такими, как были. Заметим, что условие (3.2) также изменится. Раньше в любой момент времени сумма всех средних численностей была равна одной и той же величине N; теперь она будет равна изменяющейся со временем численности где Таким образом, учет пополнения численностей состояний сводится к тому, что к правой части соответствующего дифференциального уравнения прибавляется слагаемое, равное интенсивности пополнения — среднему числу элементов, вводимых в данное состояние за единицу времени. Пример 1. Рассматривается система, состоящая (в начальный момент) из — исправен;
— ремонтируется. Соответствующие средние численности обозначим Интенсивность потока неисправностей работающего прибора равна К. Среднее время осмотра не зависит от числа осматриваемых приборов и равно Чтобы скомпенсировать убыль приборов в результате списания, производится пополнение численности приборов извне (исправными приборами), причем за единицу времени в систему вводится в среднем Требуется: — написать уравнения динамики средних с учетом пополнения, — определить, какова должна быть функция — написать формулу для суммарного числа элементов Решение. На графе рис. 6.13 проставляем интенсивности потоков событий. Интенсивность Заменяя истинную численность ремонтируемых приборов Система дифференциальных уравнений динамики средних будет: Заметим, что в данном случае мы не можем так просто отбросить любое из уравнений, как в случае без пополнения, так как условие (3.2) видоизменяется; общее число элементов в системе зависит от времени и равно: Для того чтобы в среднем скомпенсировать списываемые приборы, интенсивность пополнения должна быть равна среднему числу приборов, списываемых за единицу времени. Всего в единицу времени списывается (переходит из состояния в з) в среднем приборов; значит, мы должны положить При такой интенсивности пополнения система уравнений динамики средних примет вид: Из числа уравнений (3.6) можно безболезненно исключить третье, так как величина В данном примере 1 пополнение вводилось только в одно состояние; вообще, это может быть и не так (например, можно вводить пополнение неисправными приборами, которые должны ремонтироваться местными средствами). Заметим, кроме того, что функции пополнения могут иметь как положительные, так и отрицательные значения (убыль элементов). Рис. 6.14 Рис. 6.15 Пополнения, вводимые в состояния, иногда бывает удобно изображать наглядно, на графе состояний (рис. 6.14). Условимся изображать их «полустрелками», не идущими ни из какого состояния, а в случае «убыли» — не направленными ни в какое состояние (для наглядности полустрелки, в отличие от стрелок, будем делать двойными). Размечая граф интенсивностями потоков событий, против полустрелок будем писать не интенсивность, приходящуюся на один элемент, а интенсивность приходящуюся на систему в целом (это делается для того, чтобы избежать ненужного деления и умножения на одно и то же число). Пример 2. В условиях примера 1 пополнение численностей относится к двум состояниям: (исправные приборы) и (ремонтируемые приборы), причем некоторая доля а вновь поставляемых приборов дается исправными, а доля (1 — а) — неисправными; последние сразу же начинают ремонтироваться. Как и в предыдущем примере, суммарное пополнение в единицу времени равно Построить граф состояний, отразив на нем пополнение, написать уравнения динамики средних, определить общее среднее количество элементов в системе Решение. Граф состояний показан на рис. 6.15; полустрелки, направленные в состояния Из них по-прежнему удобнее всего исключить третье уравнение и выразить Общее суммарное число элементов в системе меняется во времени согласно формуле:
|
Оглавление
|