1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
Макеты страниц
4. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ. ОПТИМИЗАЦИЯ РЕШЕНИЯ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИВ предыдущем параграфе мы рассмотрели самый простой, полностью детерминированный случай, когда все условия операции К сожалению, этот простейший случай не так уж часто встречается на практике. Гораздо более типичен случай, когда не все условия, в которых будет проводиться операция, известны заранее, а некоторые из них содержат элемент неопределенности. Например, успех операции может зависеть от метеорологических условий, которые заранее неизвестны, или от колебаний спроса и предложения, заранее трудно предвидимых, связанных с капризами моды, или же от поведения разумного противника, действия которого заранее неизвестны. В подобных случаях эффективность операции зависит уже не от двух, а от трех категорий факторов: — условия выполнения операции — неизвестные условия или факторы — элементы решения Пусть эффективность операции характеризуется некоторым показателем W, зависящим от всех трех групп факторов. Это мы запишем в виде общей формулы: Если бы условия При заданных условиях Это — уже другая, не чисто математическая задача (недаром в ее формулировке сделана оговорка «по возможности»). Наличие неизвестных факторов Давайте будем честны: неопределенность есть неопределенность. Если условия выполнения операции неизвестны, мы не имеем возможности так же успешно организовать ее, как мы это сделали бы, если бы располагали большей информацией. Поэтому любое решение, принятое в условиях неопределенности, хуже решения, принятого во впол «Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими методами». Задачи о выборе решения в условиях неопределенности встречаются нам в жизни на каждом шагу. Пусть, например, мы собрались ехать в отпуск, взяв с собой чемодан ограниченного объема, причем вес чемодана не должен превышать того, при котором мы можем носить его без посторонней помощи (условия Эту задачу мы, разумеется, решаем без всякого математического аппарата, хотя, по-видимому, не без опоры на какие-то численные данные (хотя бы на вероятности морозной или дождливой погоды в районах путешествия в данное время года). Однако, если нужно принять более серьезное и ответственное решение (например, о характеристиках проектируемой плотины в районе возможных паводков, или о выборе типа посадочного устройства для посадки на планету с неизвестными свойствами поверхности, или о выборе образца вооружения для борьбы с противником, характеристики которого заранее неизвестны), то выбору решения в обязательном порядке должны быть предпосланы математические расчеты, облегчающие этот выбор и сообщающие ему, в доступной мере, черты разумности. Применяемые при этом методы существенно зависят от того, какова природа неизвестных факторов Наиболее простым и благоприятным для расчетов является случай, когда неизвестные факторы Пусть, например, мы рассматриваем рабйту железнодорожной сортировочной станции, стремясь оптимизировать процесс обслуживания прибывающих на эту станцию грузовых поездов. Заранее неизвестны ни точные моменты прибытия поездов, ни количество вагонов в каждом поезде, ни адреса, по которым направляются вагоны. Все эти характеристики представляют собой случайные величины, закон распределения каждой из которых (и их совокупности) может быть определен по имеющимся данным обычными методами математической статистики. Аналогично, в каждой военной операции присутствуют случайные факторы, связанные с рассеиванием снарядов, со случайностью моментов обнаружения целей и т. п. В принципе все эти факторы могут быть изучены методами теории вероятностей, и для них могут быть получены законы распределения (или, по крайней мере, числовые характеристики). В случае, когда неизвестные факторы, фигурирующие в операции — — искусственное сведение к детерминированной схеме; — «оптимизация в среднем». Остановимся более подробно на каждом из этих приемов. Первый прием сводится к тому, что неопределенная, вероятностная картина явления приближенно заменяется детерминированной. Для этого все участвующие в задаче случайные факторы Этот прием применяется по преимуществу в грубых, ориентировочных расчетах, когда диапазон случайных изменений величин Второй прием («оптимизация в среднем»), более сложный, применяется, когда случайность величин Рассмотрим этот случай более подробно. Пусть показатель эффективности W существенно зависит от случайных факторов (будем для простоты считать их случайными величинами) Такую оптимизацию мы будем называть «оптимизацией в среднем». А как же с элементом неопределенности? Конечно, в какой-то мере он сохраняется. Успешность каждой отдельной операции, осуществляемой при случайных, заранее неизвестных значениях Для того, чтобы составить себе представление о том, чем мы рискуем в каждом отдельном случае, желательно, кроме математического ожидания показателя эффективности, оценивать также и его дисперсию (или среднее квадратическое отклонение). Наиболее трудным для исследования является тот случай неопределенности, когда неизвестные факторы Например, мы знаем, что на Марсе возможно наличие органической/кизни, и некоторые ученые даже считают его весьма вероятным, несовершенно невозможно подсчитать эту вероятность на основе каких-либо статистических данных. Другой пример: предположим, что эффективность проектируемого вооружения сильно зависит от того, будет ли предполагаемый противник к моменту начала боевых действий располагать средствами защиты, и если да, то какими именно? Очевидно, нет никакой возможности подсчитать вероятности этих гипотез — самое большее, их можно назначить произвольно, что сильно повредит объективности исследования. В подобных случаях, вместо произвольного и субъективного назначения вероятностей с дальнейшей «оптимизацией в среднем», рекомендуется рассмотреть весь диапазон возможных условий Действительно, рассмотрим случай, когда эффективность операции W зависит, помимо заданных условий Такое решение, оптимальное для данной совокупности условий В настоящее время полноценной математической «теории компромисса» еще не существует, хотя в теории решений и имеются некоторые попытки в этом направлении (см., например, § 13 гл. 9 настоящей книги). Обычно окончательный выбор компромиссного решения осуществляется человеком, который, опираясь на расчеты, может оценить и сопоставить сильные и слабые стороны каждого варианта решения в разных условиях и на основе этого сделать окончательный выбор. При этом необязательно (хотя иногда и любопытно) знать точный локальный оптимум для каждой совокупности условий В последнюю очередь рассмотрим своеобразный случай, возникающий в так называемых конфликтных ситуациях, когда неизвестные параметры При выборе решений в подобных случаях может оказаться полезным математический аппарат так называемой теории игр — математической теории конфликтных ситуаций (см. гл. 10). Модели конфликтных ситуаций, изучаемые в теории игр, основаны на предположении, что мы имеем дело с разумным и дальновидным противником, всегда выбирающим свое поведение наихудшим для нас (и наилучшим для себя) способом. Такая идеализация конфликтной ситуации в некоторых случаях может подсказать нам наименее рискованное, «перестраховочное» решение, которое необязательно принимать, но во всяком случае полезно иметь в виду. Наконец, сделаем одно общее замечание. При обосновании решения в условиях неопределенности, что бы мы ни делали, элемент неопределенности остается. Поэтому неразумно предъявлять к точности таких решений слишком высокие требования. Вместо того, чтобы после скрупулезных расчетов однозначно указать одно-единственное, в точности оптимальное (в каком-то смысле) решение, всегда лучше выделить область приемлемых решений, которые оказываются несущественно хуже других, какой бы точкой зрения мы ни пользовались. В пределах этой области могут произвести свой окончательный выбор ответственные за него лица.
|
Оглавление
|