ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Числа рациональные и иррациональные
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 4. Периодические десятичные дроби

Вернемся теперь к рассмотрению рациональных чисел. Рациональные дроби были нами разделены на два типа — на представимые конечными десятичными дробями и на не представимые таким образом.

Покажем, что десятичное разложение любой дроби второго типа содержит периодически повторяющиеся части; например,

Для удобства мы воспользуемся стандартным обозначением периодических десятичных дробей, а именно повторяющуюся часть мы будем заключать в круглые скобки:

Причину появления периодичности можно понять из процедуры перевода рациональной дроби, например 2/7, в десятичную:

В процессе деления последовательными остатками являются числа 6, 4, 5. 1, 3, 2. По достижении остатка 2 цикл завершается, и мы возвращаемся к делению 20 на 7. Все остатки меньше, чем делитель, равный 7, так что имеется всего шесть различных возможных остатков, и поэтому необходимо возникнет повторение остатков.

(Остаток 0 невозможен, так как конечные десятичные разложения исключены из рассмотрения.)

В разобранном выше примере повторение обнаружилось, когда деление 20 на 7 встретилось во второй раз. При этом деление 20 на 7 было также первым шагом всего процесса деления. Повторение вовсе не обязательно возвращает нас именно к первому шагу. Рассмотрим, например, разложение в десятичную дробь числа 209/700:

Повторение здесь возникает при появлении остатка 600, который уже встречался несколькими шагами раньше. Как мы знаем, если делитель равен 700, то возможными остатками являются числа . У нас имеется, таким образом, уверенность в повторении остатка, хотя для достижения повторения, возможно, пришлось бы проделать весьма значительное число шагов.

Общий случай произвольной дроби может быть разобран аналогичным способом. Именно при делении целого числа а на целое число b в остатке могут появиться лишь следующие числа: поэтому в процессе деления неизбежно возникает повторение остатка.

С этого места начинается новый цикл; результатом деления является периодическая десятичная дробь.

Таким образом, нами доказана половина следующего предложения:

Всякое рациональное число а/b представимо как конечная или бесконечная периодическая десятичная дробь; обратно, любая конечная, а также любая бесконечная периодическая десятичная дробь представляют собой некоторое рациональное число.

Вторая половина этого предложения, которую нам еще только предстоит доказать, касается двух типов десятичных дробей — конечных и бесконечных периодических. Конечные десятичные дроби рассмотрены были выше, и мы видели, что они представляют собой рациональные числа. Обратимся теперь к бесконечным периодическим десятичным дробям. Покажем сначала, что некоторая конкретная бесконечная периодическая десятичная дробь представляет собой рациональное число. После разбора частного случая тот же метод будет применен к произвольной периодической десятичной дроби.

Рассмотрим бесконечную периодическую десятичную дробь:

или, в иной записи,

Умножим ее сначала на одно число, затем — на другое; числа, на которые мы умножаем дробь, выбираются таким образом, чтобы при вычитании одного произведения из другого бесконечная периодическая часть сократилась бы. В нашем примере в качестве таких множителей можно взять числа и , поскольку

и

так что разность равна

Следовательно,

и, стало быть, число рациональное.

Обобщая использованный метод, мы покажем, что множители и не были «взяты с потолка», а были выбраны согласно определенному правилу. Ниже целая часть десятичной дроби (в рассмотренном выше примере равная 28) опускается, поскольку в доказательстве она не играет существенной роли. Любую бесконечную периодическую десятичную дробь (без целой части) можно записать в виде

где обозначают s последовательных цифр неповторяющейся части, а суть t цифр периода. В рассмотренном примере . Если умножить сначала на затем на и второе произведение вычесть из первого, то мы получим

и

так что

Следовательно, число равно отношению двух целых чисел и, стало быть, рационально, что нам и требовалось доказать.

Упражнение

Найти рациональные дроби, равные следующим десятичным дробям:

<< Предыдущий параграф Следующий параграф >>
Оглавление