1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
Макеты страниц
§ 4. Периодические десятичные дробиВернемся теперь к рассмотрению рациональных чисел. Рациональные дроби были нами разделены на два типа — на представимые конечными десятичными дробями и на не представимые таким образом. Покажем, что десятичное разложение любой дроби второго типа содержит периодически повторяющиеся части; например, Для удобства мы воспользуемся стандартным обозначением периодических десятичных дробей, а именно повторяющуюся часть мы будем заключать в круглые скобки: Причину появления периодичности можно понять из процедуры перевода рациональной дроби, например 2/7, в десятичную: В процессе деления последовательными остатками являются числа 6, 4, 5. 1, 3, 2. По достижении остатка 2 цикл завершается, и мы возвращаемся к делению 20 на 7. Все остатки меньше, чем делитель, равный 7, так что имеется всего шесть различных возможных остатков, и поэтому необходимо возникнет повторение остатков. (Остаток 0 невозможен, так как конечные десятичные разложения исключены из рассмотрения.) В разобранном выше примере повторение обнаружилось, когда деление 20 на 7 встретилось во второй раз. При этом деление 20 на 7 было также первым шагом всего процесса деления. Повторение вовсе не обязательно возвращает нас именно к первому шагу. Рассмотрим, например, разложение в десятичную дробь числа 209/700: Повторение здесь возникает при появлении остатка 600, который уже встречался несколькими шагами раньше. Как мы знаем, если делитель равен 700, то возможными остатками являются числа Общий случай произвольной дроби С этого места начинается новый цикл; результатом деления является периодическая десятичная дробь. Таким образом, нами доказана половина следующего предложения: Всякое рациональное число а/b представимо как конечная или бесконечная периодическая десятичная дробь; обратно, любая конечная, а также любая бесконечная периодическая десятичная дробь представляют собой некоторое рациональное число. Вторая половина этого предложения, которую нам еще только предстоит доказать, касается двух типов десятичных дробей — конечных и бесконечных периодических. Конечные десятичные дроби рассмотрены были выше, и мы видели, что они представляют собой рациональные числа. Обратимся теперь к бесконечным периодическим десятичным дробям. Покажем сначала, что некоторая конкретная бесконечная периодическая десятичная дробь представляет собой рациональное число. После разбора частного случая тот же метод будет применен к произвольной периодической десятичной дроби. Рассмотрим бесконечную периодическую десятичную дробь: или, в иной записи, Умножим ее сначала на одно число, затем — на другое; числа, на которые мы умножаем дробь, выбираются таким образом, чтобы при вычитании одного произведения из другого бесконечная периодическая часть сократилась бы. В нашем примере в качестве таких множителей можно взять числа и так что разность Следовательно, и, стало быть, Обобщая использованный метод, мы покажем, что множители где и так что Следовательно, число Упражнение Найти рациональные дроби, равные следующим десятичным дробям:
|
Оглавление
|